Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena

指令微调后的模型不一定在传统Benchmark上取得更好的结果,类似MMLU和HELM。根据人类爱好对齐后的模型,需要新的评测方法。

文章提出了两个主要内容:MT-bench和Chatbot Arena

MT-bench是一系列开放式问题,用于评估聊天机器人的多回合对话和指令遵循能力------这是人类偏好的两个关键因素。MT-bench还精心构建,根据其核心能力(如推理和数学)区分聊天机器人。

此外,我们还开发了聊天机器人竞技场(Chatbot Arena),这是一个众包平台,可以让聊天机器人在真实场景中进行匿名战斗------用户可以同时与两个聊天机器人进行对话,并根据个人偏好对它们的反应进行评分。

并且发现了模型评测存在的些许问题:位置偏见,冗长偏见,自我增强偏见,和有限的推理能力

MT-Bench

现有的评估方式一般有三种

  1. 核心知识benchmark:有固定的回答,可以自动校验
  2. 指令跟随:是稍微开放性的问题
  3. 聊天benchmark:问题多样性,复杂、开放。

MT-bench:80条多轮对话,总共8个类别:写作、角色扮演、提取、推理、数学、编码、知识I (STEM)和知识II(人文/社会科学)。每一个类里有10条多轮对话。

Chatbot-arena

匿名对战平台,让不同的模型对一个输入进行回答,选择哪一个更好。

LLM-as-a-judge

三种评估模式:

  1. 成对比较:给大模型一个问题两个回答,选择哪一个更好,或者平局。
  2. 单回答评分:直接给出一个分数。
  3. 参考指导评分:给样例,按照样例模式给分。

advantage

可扩展,可解释

limitations

  1. position bias:大模型可能倾向于放在前面的样例,或者某些位置的样例。
  2. verbosity bias:大模型更倾向于冗长的回复
  3. self-enhancement bias:大模型更倾向于自己生成的回答
  4. Limited capability in grading math and reasoning questions:难以评价数学和推理问题

address limitations

  1. 交换位置,两次评分
  2. few-shot
  3. 思维链+先生成参考答案,指导思考
  4. 微调一个判断模型

多轮对话评估

  1. 分多次输入多轮对话的评估
  2. 一次输入全部对话评估

作者发现2更好

Agreement Evaluate

作者评估了在MT-bench和Chatbot Arena上,人类和LLM判官之间的一致性。

MT-bench

在6个大模型上问了这80个问题,然后使用两种评价:

  1. 58个专家评价
  2. LLM评价

人类和GPT-4模型的高度一致

GPT-4的两两比较和单一答案评分显示与人类专家的一致性非常高。GPT-4与人类在设置S2 (w/o tie)下的一致性达到85%,甚至高于人类之间的一致性(81%)。这意味着GPT-4的判断与大多数人类密切一致。不沦是comparison还是single score,都能给出不错的答案。

相关推荐
小鸡吃米…5 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫6 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)6 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan6 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维6 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS6 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd6 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟7 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然7 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~7 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1