环境配置
开发机选择 30% A100,镜像选择为 Cuda12.2-conda。
首先来为 Lagent 配置一个可用的环境
创建环境
bash
conda create -n lagent python=3.10 -y
激活环境
bash
conda activate lagent
安装 torch
bash
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
安装其他依赖包
bash
pip install termcolor==2.4.0
pip install streamlit==1.39.0
pip install class_registry==2.1.2
pip install datasets==3.1.0
接下来,我们通过源码安装的方式安装 lagent
创建目录以存放代码
bash
mkdir -p /root/agent_camp4
cd /root/agent_camp4
git clone https://github.com/InternLM/lagent.git
cd lagent && git checkout e304e5d && pip install -e . && cd ..
pip install griffe==0.48.0
Lagent框架中Agent的使用
接下来,我们将使用 Lagent 框架,一步步搭建并使用基于 InternLM2.5 的 Web Demo,体验其强大的智能体功能。
首先,需要申请 API 授权令牌 ,请前往 书生·浦语 API 文档 申请并获取 Authorization 令牌,将其填入后续代码的 YOUR_TOKEN_HERE 变量中。
创建一个代码example,创建agent_api_web_demo.py,在里面实现我们的Web Demo:
bash
conda activate lagent
cd /root/agent_camp4/lagent/examples
touch agent_api_web_demo.py
Action,也称为工具,Lagent中集成了很多好用的工具,提供了一套LLM驱动的智能体用来与真实世界交互并执行复杂任务的函数,包括谷歌文献检索、Arxiv文献检索、Python编译器等。具体可以查看文档
让我们来体验一下,让LLM调用Arxiv文献检索这个工具:
在agent_api_web_demo.py中写入下面的代码,这里利用 GPTAPI 类,该类继承自 BaseAPILLM,封装了对 API 的调用逻辑,然后利用Streamlit启动Web服务:
bash
import copy
import os
from typing import List
import streamlit as st
from lagent.actions import ArxivSearch
from lagent.prompts.parsers import PluginParser
from lagent.agents.stream import INTERPRETER_CN, META_CN, PLUGIN_CN, AgentForInternLM, get_plugin_prompt
from lagent.llms import GPTAPI
class SessionState:
"""管理会话状态的类。"""
def init_state(self):
"""初始化会话状态变量。"""
st.session_state['assistant'] = [] # 助手消息历史
st.session_state['user'] = [] # 用户消息历史
# 初始化插件列表
action_list = [
ArxivSearch(),
]
st.session_state['plugin_map'] = {action.name: action for action in action_list}
st.session_state['model_map'] = {} # 存储模型实例
st.session_state['model_selected'] = None # 当前选定模型
st.session_state['plugin_actions'] = set() # 当前激活插件
st.session_state['history'] = [] # 聊天历史
st.session_state['api_base'] = None # 初始化API base地址
def clear_state(self):
"""清除当前会话状态。"""
st.session_state['assistant'] = []
st.session_state['user'] = []
st.session_state['model_selected'] = None
class StreamlitUI:
"""管理 Streamlit 界面的类。"""
def __init__(self, session_state: SessionState):
self.session_state = session_state
self.plugin_action = [] # 当前选定的插件
# 初始化提示词
self.meta_prompt = META_CN
self.plugin_prompt = PLUGIN_CN
self.init_streamlit()
def init_streamlit(self):
"""初始化 Streamlit 的 UI 设置。"""
st.set_page_config(
layout='wide',
page_title='lagent-web',
page_icon='./docs/imgs/lagent_icon.png'
)
st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
def setup_sidebar(self):
"""设置侧边栏,选择模型和插件。"""
# 模型名称和 API Base 输入框
model_name = st.sidebar.text_input('模型名称:', value='internlm2.5-latest')
# ================================== 硅基流动的API ==================================
# 注意,如果采用硅基流动API,模型名称需要更改为:internlm/internlm2_5-7b-chat 或者 internlm/internlm2_5-20b-chat
# api_base = st.sidebar.text_input(
# 'API Base 地址:', value='https://api.siliconflow.cn/v1/chat/completions'
# )
# ================================== 浦语官方的API ==================================
api_base = st.sidebar.text_input(
'API Base 地址:', value='https://internlm-chat.intern-ai.org.cn/puyu/api/v1/chat/completions'
)
# ==================================================================================
# 插件选择
plugin_name = st.sidebar.multiselect(
'插件选择',
options=list(st.session_state['plugin_map'].keys()),
default=[],
)
# 根据选择的插件生成插件操作列表
self.plugin_action = [st.session_state['plugin_map'][name] for name in plugin_name]
# 动态生成插件提示
if self.plugin_action:
self.plugin_prompt = get_plugin_prompt(self.plugin_action)
# 清空对话按钮
if st.sidebar.button('清空对话', key='clear'):
self.session_state.clear_state()
return model_name, api_base, self.plugin_action
def initialize_chatbot(self, model_name, api_base, plugin_action):
"""初始化 GPTAPI 实例作为 chatbot。"""
token = os.getenv("token")
if not token:
st.error("未检测到环境变量 `token`,请设置环境变量,例如 `export token='your_token_here'` 后重新运行 X﹏X")
st.stop() # 停止运行应用
# 创建完整的 meta_prompt,保留原始结构并动态插入侧边栏配置
meta_prompt = [
{"role": "system", "content": self.meta_prompt, "api_role": "system"},
{"role": "user", "content": "", "api_role": "user"},
{"role": "assistant", "content": self.plugin_prompt, "api_role": "assistant"},
{"role": "environment", "content": "", "api_role": "environment"}
]
api_model = GPTAPI(
model_type=model_name,
api_base=api_base,
key=token, # 从环境变量中获取授权令牌
meta_template=meta_prompt,
max_new_tokens=512,
temperature=0.8,
top_p=0.9
)
return api_model
def render_user(self, prompt: str):
"""渲染用户输入内容。"""
with st.chat_message('user'):
st.markdown(prompt)
def render_assistant(self, agent_return):
"""渲染助手响应内容。"""
with st.chat_message('assistant'):
content = getattr(agent_return, "content", str(agent_return))
st.markdown(content if isinstance(content, str) else str(content))
def main():
"""主函数,运行 Streamlit 应用。"""
if 'ui' not in st.session_state:
session_state = SessionState()
session_state.init_state()
st.session_state['ui'] = StreamlitUI(session_state)
else:
st.set_page_config(
layout='wide',
page_title='lagent-web',
page_icon='./docs/imgs/lagent_icon.png'
)
st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
# 设置侧边栏并获取模型和插件信息
model_name, api_base, plugin_action = st.session_state['ui'].setup_sidebar()
plugins = [dict(type=f"lagent.actions.{plugin.__class__.__name__}") for plugin in plugin_action]
if (
'chatbot' not in st.session_state or
model_name != st.session_state['chatbot'].model_type or
'last_plugin_action' not in st.session_state or
plugin_action != st.session_state['last_plugin_action'] or
api_base != st.session_state['api_base']
):
# 更新 Chatbot
st.session_state['chatbot'] = st.session_state['ui'].initialize_chatbot(model_name, api_base, plugin_action)
st.session_state['last_plugin_action'] = plugin_action # 更新插件状态
st.session_state['api_base'] = api_base # 更新 API Base 地址
# 初始化 AgentForInternLM
st.session_state['agent'] = AgentForInternLM(
llm=st.session_state['chatbot'],
plugins=plugins,
output_format=dict(
type=PluginParser,
template=PLUGIN_CN,
prompt=get_plugin_prompt(plugin_action)
)
)
# 清空对话历史
st.session_state['session_history'] = []
if 'agent' not in st.session_state:
st.session_state['agent'] = None
agent = st.session_state['agent']
for prompt, agent_return in zip(st.session_state['user'], st.session_state['assistant']):
st.session_state['ui'].render_user(prompt)
st.session_state['ui'].render_assistant(agent_return)
# 处理用户输入
if user_input := st.chat_input(''):
st.session_state['ui'].render_user(user_input)
# 调用模型时确保侧边栏的系统提示词和插件提示词生效
res = agent(user_input, session_id=0)
st.session_state['ui'].render_assistant(res)
# 更新会话状态
st.session_state['user'].append(user_input)
st.session_state['assistant'].append(copy.deepcopy(res))
st.session_state['last_status'] = None
if __name__ == '__main__':
main()
在终端中记得先将获取的API密钥写入环境变量,然后再输入启动命令:
bash
export token='your_token_here'
streamlit run agent_api_web_demo.py
export token='your_token_here'
streamlit run agent_api_web_demo.py
在等待server启动成功后,我们在 本地 的 PowerShell 中输入如下指令来进行端口映射:
bash
ssh -CNg -L 8501:127.0.0.1:8501 root@ssh.intern-ai.org.cn -p <你的 SSH 端口号>
接下来,在本地浏览器中打开 http://localhost:8501/:
如果正确输入密钥,可以看到页面如下。
页面的侧边栏有三个内容,分别是模型名称、API Base地址和插件选择,其中如果采用浦语的API,模型名称可以选择internlm2.5-latest,默认指向最新发布的 InternLM2.5 系列模型,当前指向internlm2.5-20b-0719,窗口长度是32K,最大输出4096Tokens。
备注: 如果采用硅基流动API,模型名称需要更改为:internlm/internlm2_5-7b-chat 或者 internlm/internlm2_5-20b-chat。
将ArxivSearch插件选择上,再次输入指令"帮我搜索一下最新版本的MindSearch论文",可以看到,通过调用外部工具,大模型成功理解了我们的任务,得到了我们需要的文献:
3 制作一个属于自己的Agent
在完成了上面的内容后,可能就会同学好奇了,那么我应该如何基于Lagent框架实现一个自己的工具,赋予LLM额外的能力? 本节将会以实时天气查询为例子,通过调用和风天气API,介绍如何自定义一个自己的Agent。
Lagent 框架的工具部分文档可以在此处查看:Lagent 工具文档。
使用 Lagent 自定义工具主要分为以下3步:
(1)继承 BaseAction 类
(2)实现简单工具的 run 方法;或者实现工具包内每个子工具的功能
(3)简单工具的 run 方法可选被 tool_api 装饰;工具包内每个子工具的功能都需要被 tool_api 装饰
首先,为了使用和风天气的 API 服务,你需要获取一个 API Key。请按以下步骤操作:
(1)访问 和风天气 API 文档(需要注册账号)。
(2)点击页面右上角的"控制台"。
(3)在控制台中,点击左侧的"项目管理",然后点击右上角"创建项目"。
(4)输入项目名称(可以使用"Lagent"),选择免费订阅,并在凭据设置中创建新的凭据。
(5)创建后,回到"项目管理"页面,找到你的 API Key 并复制保存。
接着,我们需要在laegnt/actions文件夹下面创建一个天气查询的工具程序。
conda activate lagent
cd /root/agent_camp4/lagent/lagent/actions
touch weather_query.py
将下面的代码复制进去,注意要将刚刚申请的API Key在终端中输入进去:
export weather_token='your_token_here'
import os
import requests
from lagent.actions.base_action import BaseAction, tool_api
from lagent.schema import ActionReturn, ActionStatusCode
class WeatherQuery(BaseAction):
def init (self):
super().init ()
self.api_key = os.getenv("weather_token")
print(self.api_key)
if not self.api_key:
raise EnvironmentError("未找到环境变量 'token'。请设置你的和风天气 API Key 到 'weather_token' 环境变量中,比如export weather_token='xxx' ")
@tool_api
def run(self, location: str) -> dict:
"""
查询实时天气信息。
Args:
location (str): 要查询的地点名称、LocationID 或经纬度坐标(如 "101010100" 或 "116.41,39.92")。
Returns:
dict: 包含天气信息的字典
* location: 地点名称
* weather: 天气状况
* temperature: 当前温度
* wind_direction: 风向
* wind_speed: 风速(公里/小时)
* humidity: 相对湿度(%)
* report_time: 数据报告时间
"""
try:
# 如果 location 不是坐标格式(例如 "116.41,39.92"),则调用 GeoAPI 获取 LocationID
if not ("," in location and location.replace(",", "").replace(".", "").isdigit()):
# 使用 GeoAPI 获取 LocationID
geo_url = f"https://geoapi.qweather.com/v2/city/lookup?location={location}&key={self.api_key}"
geo_response = requests.get(geo_url)
geo_data = geo_response.json()
if geo_data.get("code") != "200" or not geo_data.get("location"):
raise Exception(f"GeoAPI 返回错误码:{geo_data.get('code')} 或未找到位置")
location = geo_data["location"][0]["id"]
# 构建天气查询的 API 请求 URL
weather_url = f"https://devapi.qweather.com/v7/weather/now?location={location}&key={self.api_key}"
response = requests.get(weather_url)
data = response.json()
# 检查 API 响应码
if data.get("code") != "200":
raise Exception(f"Weather API 返回错误码:{data.get('code')}")
# 解析和组织天气信息
weather_info = {
"location": location,
"weather": data["now"]["text"],
"temperature": data["now"]["temp"] + "°C",
"wind_direction": data["now"]["windDir"],
"wind_speed": data["now"]["windSpeed"] + " km/h",
"humidity": data["now"]["humidity"] + "%",
"report_time": data["updateTime"]
}
return {"result": weather_info}
except Exception as exc:
return ActionReturn(
errmsg=f"WeatherQuery 异常:{exc}",
state=ActionStatusCode.HTTP_ERROR
)
其中,WeatherQuery 类继承自 BaseAction,这是 Lagent 的基础工具类,提供了工具的框架逻辑。tool_api 是一个装饰器,用于标记工具中具体执行逻辑的函数,使得 Lagent 智能体能够调用该方法执行任务。run 方法是工具的主要逻辑入口,通常会根据输入参数完成一项任务并返回结果。
在具体函数实现上,利用GeoAPI 获取 LocationID,当用户输入的 location 不是经纬度坐标格式(如 116.41,39.92),则使用和风天气的 GeoAPI 将位置名转换为 LocationID,并通过 Weather API 获取目标位置的实时天气数据。最后,解析返回的 JSON 数据,并格式化为结构化字典:
在/root/agent_camp4/lagent/lagent/actions/init .py中加入下面的代码,用以初始化WeatherQuery方法:
from .weather_query import WeatherQuery
all = [
'BaseAction', 'ActionExecutor', 'AsyncActionExecutor', 'InvalidAction',
'FinishAction', 'NoAction', 'BINGMap', 'AsyncBINGMap', 'ArxivSearch',
'AsyncArxivSearch', 'GoogleSearch', 'AsyncGoogleSearch', 'GoogleScholar',
'AsyncGoogleScholar', 'IPythonInterpreter', 'AsyncIPythonInterpreter',
'IPythonInteractive', 'AsyncIPythonInteractive',
'IPythonInteractiveManager', 'PythonInterpreter', 'AsyncPythonInterpreter',
'PPT', 'AsyncPPT', 'WebBrowser', 'AsyncWebBrowser', 'BaseParser',
'JsonParser', 'TupleParser', 'tool_api', 'WeatherQuery' # 这里
]
接下来,我们将修改 Web Demo 脚本来集成自定义的 WeatherQuery 插件。
打开agent_api_web_demo.py, 修改内容如下,目的是将该工具注册进大模型的插件列表中,使得其可以知道。
- from lagent.actions import ArxivSearch
- from lagent.actions import ArxivSearch, WeatherQuery
初始化插件列表
action_list = [
ArxivSearch(),
]
action_list = [
ArxivSearch(),
WeatherQuery(),
]
再次启动Web程序,streamlit run agent_api_web_demo.py。
可以看到左侧的插件栏多了天气查询插件,我们首先输入命令"帮我查询一下上海现在的天气",可以看到模型无法知道现在的实时天气情况。
将2个插件同时勾选上,用以说明模型具备识别调用不同工具的能力,什么任务对应什么工具来解决。
如果我们再次询问,让其搜索文献,可以看到,模型具备了根据任务情况调用不同工具的能力。