Lagent:从零搭建你的 Multi-Agent

环境配置

开发机选择 30% A100,镜像选择为 Cuda12.2-conda。

首先来为 Lagent 配置一个可用的环境

创建环境

bash 复制代码
conda create -n lagent python=3.10 -y

激活环境

bash 复制代码
conda activate lagent

安装 torch

bash 复制代码
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y

安装其他依赖包

bash 复制代码
pip install termcolor==2.4.0
pip install streamlit==1.39.0
pip install class_registry==2.1.2
pip install datasets==3.1.0

接下来,我们通过源码安装的方式安装 lagent

创建目录以存放代码

bash 复制代码
mkdir -p /root/agent_camp4
cd /root/agent_camp4
git clone https://github.com/InternLM/lagent.git
cd lagent && git checkout e304e5d && pip install -e . && cd ..
pip install griffe==0.48.0

Lagent框架中Agent的使用

接下来,我们将使用 Lagent 框架,一步步搭建并使用基于 InternLM2.5 的 Web Demo,体验其强大的智能体功能。

首先,需要申请 API 授权令牌 ,请前往 书生·浦语 API 文档 申请并获取 Authorization 令牌,将其填入后续代码的 YOUR_TOKEN_HERE 变量中。

创建一个代码example,创建agent_api_web_demo.py,在里面实现我们的Web Demo:

bash 复制代码
conda activate lagent
cd /root/agent_camp4/lagent/examples
touch agent_api_web_demo.py

Action,也称为工具,Lagent中集成了很多好用的工具,提供了一套LLM驱动的智能体用来与真实世界交互并执行复杂任务的函数,包括谷歌文献检索、Arxiv文献检索、Python编译器等。具体可以查看文档

让我们来体验一下,让LLM调用Arxiv文献检索这个工具:

在agent_api_web_demo.py中写入下面的代码,这里利用 GPTAPI 类,该类继承自 BaseAPILLM,封装了对 API 的调用逻辑,然后利用Streamlit启动Web服务:

bash 复制代码
import copy
import os
from typing import List
import streamlit as st
from lagent.actions import ArxivSearch
from lagent.prompts.parsers import PluginParser
from lagent.agents.stream import INTERPRETER_CN, META_CN, PLUGIN_CN, AgentForInternLM, get_plugin_prompt
from lagent.llms import GPTAPI

class SessionState:
    """管理会话状态的类。"""

    def init_state(self):
        """初始化会话状态变量。"""
        st.session_state['assistant'] = []  # 助手消息历史
        st.session_state['user'] = []  # 用户消息历史
        # 初始化插件列表
        action_list = [
            ArxivSearch(),
        ]
        st.session_state['plugin_map'] = {action.name: action for action in action_list}
        st.session_state['model_map'] = {}  # 存储模型实例
        st.session_state['model_selected'] = None  # 当前选定模型
        st.session_state['plugin_actions'] = set()  # 当前激活插件
        st.session_state['history'] = []  # 聊天历史
        st.session_state['api_base'] = None  # 初始化API base地址

    def clear_state(self):
        """清除当前会话状态。"""
        st.session_state['assistant'] = []
        st.session_state['user'] = []
        st.session_state['model_selected'] = None


class StreamlitUI:
    """管理 Streamlit 界面的类。"""

    def __init__(self, session_state: SessionState):
        self.session_state = session_state
        self.plugin_action = []  # 当前选定的插件
        # 初始化提示词
        self.meta_prompt = META_CN
        self.plugin_prompt = PLUGIN_CN
        self.init_streamlit()

    def init_streamlit(self):
        """初始化 Streamlit 的 UI 设置。"""
        st.set_page_config(
            layout='wide',
            page_title='lagent-web',
            page_icon='./docs/imgs/lagent_icon.png'
        )
        st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')

    def setup_sidebar(self):
        """设置侧边栏,选择模型和插件。"""
        # 模型名称和 API Base 输入框
        model_name = st.sidebar.text_input('模型名称:', value='internlm2.5-latest')
        
        # ================================== 硅基流动的API ==================================
        # 注意,如果采用硅基流动API,模型名称需要更改为:internlm/internlm2_5-7b-chat 或者 internlm/internlm2_5-20b-chat
        # api_base = st.sidebar.text_input(
        #     'API Base 地址:', value='https://api.siliconflow.cn/v1/chat/completions'
        # )
        # ================================== 浦语官方的API ==================================
        api_base = st.sidebar.text_input(
            'API Base 地址:', value='https://internlm-chat.intern-ai.org.cn/puyu/api/v1/chat/completions'
        )
        # ==================================================================================
        # 插件选择
        plugin_name = st.sidebar.multiselect(
            '插件选择',
            options=list(st.session_state['plugin_map'].keys()),
            default=[],
        )

        # 根据选择的插件生成插件操作列表
        self.plugin_action = [st.session_state['plugin_map'][name] for name in plugin_name]

        # 动态生成插件提示
        if self.plugin_action:
            self.plugin_prompt = get_plugin_prompt(self.plugin_action)

        # 清空对话按钮
        if st.sidebar.button('清空对话', key='clear'):
            self.session_state.clear_state()

        return model_name, api_base, self.plugin_action

    def initialize_chatbot(self, model_name, api_base, plugin_action):
        """初始化 GPTAPI 实例作为 chatbot。"""
        token = os.getenv("token")
        if not token:
            st.error("未检测到环境变量 `token`,请设置环境变量,例如 `export token='your_token_here'` 后重新运行 X﹏X")
            st.stop()  # 停止运行应用
            
        # 创建完整的 meta_prompt,保留原始结构并动态插入侧边栏配置
        meta_prompt = [
            {"role": "system", "content": self.meta_prompt, "api_role": "system"},
            {"role": "user", "content": "", "api_role": "user"},
            {"role": "assistant", "content": self.plugin_prompt, "api_role": "assistant"},
            {"role": "environment", "content": "", "api_role": "environment"}
        ]

        api_model = GPTAPI(
            model_type=model_name,
            api_base=api_base,
            key=token,  # 从环境变量中获取授权令牌
            meta_template=meta_prompt,
            max_new_tokens=512,
            temperature=0.8,
            top_p=0.9
        )
        return api_model

    def render_user(self, prompt: str):
        """渲染用户输入内容。"""
        with st.chat_message('user'):
            st.markdown(prompt)

    def render_assistant(self, agent_return):
        """渲染助手响应内容。"""
        with st.chat_message('assistant'):
            content = getattr(agent_return, "content", str(agent_return))
            st.markdown(content if isinstance(content, str) else str(content))


def main():
    """主函数,运行 Streamlit 应用。"""
    if 'ui' not in st.session_state:
        session_state = SessionState()
        session_state.init_state()
        st.session_state['ui'] = StreamlitUI(session_state)
    else:
        st.set_page_config(
            layout='wide',
            page_title='lagent-web',
            page_icon='./docs/imgs/lagent_icon.png'
        )
        st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')

    # 设置侧边栏并获取模型和插件信息
    model_name, api_base, plugin_action = st.session_state['ui'].setup_sidebar()
    plugins = [dict(type=f"lagent.actions.{plugin.__class__.__name__}") for plugin in plugin_action]

    if (
        'chatbot' not in st.session_state or
        model_name != st.session_state['chatbot'].model_type or
        'last_plugin_action' not in st.session_state or
        plugin_action != st.session_state['last_plugin_action'] or
        api_base != st.session_state['api_base']    
    ):
        # 更新 Chatbot
        st.session_state['chatbot'] = st.session_state['ui'].initialize_chatbot(model_name, api_base, plugin_action)
        st.session_state['last_plugin_action'] = plugin_action  # 更新插件状态
        st.session_state['api_base'] = api_base  # 更新 API Base 地址

        # 初始化 AgentForInternLM
        st.session_state['agent'] = AgentForInternLM(
            llm=st.session_state['chatbot'],
            plugins=plugins,
            output_format=dict(
                type=PluginParser,
                template=PLUGIN_CN,
                prompt=get_plugin_prompt(plugin_action)
            )
        )
        # 清空对话历史
        st.session_state['session_history'] = []

    if 'agent' not in st.session_state:
        st.session_state['agent'] = None

    agent = st.session_state['agent']
    for prompt, agent_return in zip(st.session_state['user'], st.session_state['assistant']):
        st.session_state['ui'].render_user(prompt)
        st.session_state['ui'].render_assistant(agent_return)

    # 处理用户输入
    if user_input := st.chat_input(''):
        st.session_state['ui'].render_user(user_input)

        # 调用模型时确保侧边栏的系统提示词和插件提示词生效
        res = agent(user_input, session_id=0)
        st.session_state['ui'].render_assistant(res)

        # 更新会话状态
        st.session_state['user'].append(user_input)
        st.session_state['assistant'].append(copy.deepcopy(res))

    st.session_state['last_status'] = None


if __name__ == '__main__':
    main()

在终端中记得先将获取的API密钥写入环境变量,然后再输入启动命令:

bash 复制代码
export token='your_token_here'
streamlit run agent_api_web_demo.py
export token='your_token_here'
streamlit run agent_api_web_demo.py

在等待server启动成功后,我们在 本地 的 PowerShell 中输入如下指令来进行端口映射:

bash 复制代码
ssh -CNg -L 8501:127.0.0.1:8501 root@ssh.intern-ai.org.cn -p <你的 SSH 端口号>

接下来,在本地浏览器中打开 http://localhost:8501/:

如果正确输入密钥,可以看到页面如下。

页面的侧边栏有三个内容,分别是模型名称、API Base地址和插件选择,其中如果采用浦语的API,模型名称可以选择internlm2.5-latest,默认指向最新发布的 InternLM2.5 系列模型,当前指向internlm2.5-20b-0719,窗口长度是32K,最大输出4096Tokens。

备注: 如果采用硅基流动API,模型名称需要更改为:internlm/internlm2_5-7b-chat 或者 internlm/internlm2_5-20b-chat。

将ArxivSearch插件选择上,再次输入指令"帮我搜索一下最新版本的MindSearch论文",可以看到,通过调用外部工具,大模型成功理解了我们的任务,得到了我们需要的文献:

3 制作一个属于自己的Agent

在完成了上面的内容后,可能就会同学好奇了,那么我应该如何基于Lagent框架实现一个自己的工具,赋予LLM额外的能力? 本节将会以实时天气查询为例子,通过调用和风天气API,介绍如何自定义一个自己的Agent。

Lagent 框架的工具部分文档可以在此处查看:Lagent 工具文档。

使用 Lagent 自定义工具主要分为以下3步:

(1)继承 BaseAction 类

(2)实现简单工具的 run 方法;或者实现工具包内每个子工具的功能

(3)简单工具的 run 方法可选被 tool_api 装饰;工具包内每个子工具的功能都需要被 tool_api 装饰

首先,为了使用和风天气的 API 服务,你需要获取一个 API Key。请按以下步骤操作:

(1)访问 和风天气 API 文档(需要注册账号)。

(2)点击页面右上角的"控制台"。

(3)在控制台中,点击左侧的"项目管理",然后点击右上角"创建项目"。

(4)输入项目名称(可以使用"Lagent"),选择免费订阅,并在凭据设置中创建新的凭据。

(5)创建后,回到"项目管理"页面,找到你的 API Key 并复制保存。

接着,我们需要在laegnt/actions文件夹下面创建一个天气查询的工具程序。

conda activate lagent

cd /root/agent_camp4/lagent/lagent/actions

touch weather_query.py

将下面的代码复制进去,注意要将刚刚申请的API Key在终端中输入进去:

export weather_token='your_token_here'

import os

import requests

from lagent.actions.base_action import BaseAction, tool_api

from lagent.schema import ActionReturn, ActionStatusCode

class WeatherQuery(BaseAction):

def init (self):

super().init ()

self.api_key = os.getenv("weather_token")

print(self.api_key)

if not self.api_key:

raise EnvironmentError("未找到环境变量 'token'。请设置你的和风天气 API Key 到 'weather_token' 环境变量中,比如export weather_token='xxx' ")

@tool_api
def run(self, location: str) -> dict:
    """
    查询实时天气信息。

    Args:
        location (str): 要查询的地点名称、LocationID 或经纬度坐标(如 "101010100" 或 "116.41,39.92")。

    Returns:
        dict: 包含天气信息的字典
            * location: 地点名称
            * weather: 天气状况
            * temperature: 当前温度
            * wind_direction: 风向
            * wind_speed: 风速(公里/小时)
            * humidity: 相对湿度(%)
            * report_time: 数据报告时间
    """
    try:
        # 如果 location 不是坐标格式(例如 "116.41,39.92"),则调用 GeoAPI 获取 LocationID
        if not ("," in location and location.replace(",", "").replace(".", "").isdigit()):
            # 使用 GeoAPI 获取 LocationID
            geo_url = f"https://geoapi.qweather.com/v2/city/lookup?location={location}&key={self.api_key}"
            geo_response = requests.get(geo_url)
            geo_data = geo_response.json()

            if geo_data.get("code") != "200" or not geo_data.get("location"):
                raise Exception(f"GeoAPI 返回错误码:{geo_data.get('code')} 或未找到位置")

            location = geo_data["location"][0]["id"]

        # 构建天气查询的 API 请求 URL
        weather_url = f"https://devapi.qweather.com/v7/weather/now?location={location}&key={self.api_key}"
        response = requests.get(weather_url)
        data = response.json()

        # 检查 API 响应码
        if data.get("code") != "200":
            raise Exception(f"Weather API 返回错误码:{data.get('code')}")

        # 解析和组织天气信息
        weather_info = {
            "location": location,
            "weather": data["now"]["text"],
            "temperature": data["now"]["temp"] + "°C", 
            "wind_direction": data["now"]["windDir"],
            "wind_speed": data["now"]["windSpeed"] + " km/h",  
            "humidity": data["now"]["humidity"] + "%",
            "report_time": data["updateTime"]
        }

        return {"result": weather_info}

    except Exception as exc:
        return ActionReturn(
            errmsg=f"WeatherQuery 异常:{exc}",
            state=ActionStatusCode.HTTP_ERROR
        )

其中,WeatherQuery 类继承自 BaseAction,这是 Lagent 的基础工具类,提供了工具的框架逻辑。tool_api 是一个装饰器,用于标记工具中具体执行逻辑的函数,使得 Lagent 智能体能够调用该方法执行任务。run 方法是工具的主要逻辑入口,通常会根据输入参数完成一项任务并返回结果。

在具体函数实现上,利用GeoAPI 获取 LocationID,当用户输入的 location 不是经纬度坐标格式(如 116.41,39.92),则使用和风天气的 GeoAPI 将位置名转换为 LocationID,并通过 Weather API 获取目标位置的实时天气数据。最后,解析返回的 JSON 数据,并格式化为结构化字典:

在/root/agent_camp4/lagent/lagent/actions/init .py中加入下面的代码,用以初始化WeatherQuery方法:

from .weather_query import WeatherQuery
all = [

'BaseAction', 'ActionExecutor', 'AsyncActionExecutor', 'InvalidAction',

'FinishAction', 'NoAction', 'BINGMap', 'AsyncBINGMap', 'ArxivSearch',

'AsyncArxivSearch', 'GoogleSearch', 'AsyncGoogleSearch', 'GoogleScholar',

'AsyncGoogleScholar', 'IPythonInterpreter', 'AsyncIPythonInterpreter',

'IPythonInteractive', 'AsyncIPythonInteractive',

'IPythonInteractiveManager', 'PythonInterpreter', 'AsyncPythonInterpreter',

'PPT', 'AsyncPPT', 'WebBrowser', 'AsyncWebBrowser', 'BaseParser',

'JsonParser', 'TupleParser', 'tool_api', 'WeatherQuery' # 这里

]

接下来,我们将修改 Web Demo 脚本来集成自定义的 WeatherQuery 插件。

打开agent_api_web_demo.py, 修改内容如下,目的是将该工具注册进大模型的插件列表中,使得其可以知道。

  • from lagent.actions import ArxivSearch
  • from lagent.actions import ArxivSearch, WeatherQuery

初始化插件列表

     action_list = [
         ArxivSearch(),
    ]
     action_list = [
         ArxivSearch(),
         WeatherQuery(),
    ]

再次启动Web程序,streamlit run agent_api_web_demo.py。

可以看到左侧的插件栏多了天气查询插件,我们首先输入命令"帮我查询一下上海现在的天气",可以看到模型无法知道现在的实时天气情况。

将2个插件同时勾选上,用以说明模型具备识别调用不同工具的能力,什么任务对应什么工具来解决。

如果我们再次询问,让其搜索文献,可以看到,模型具备了根据任务情况调用不同工具的能力。

相关推荐
sp_fyf_20242 小时前
【大语言模型】ACL2024论文-35 WAV2GLOSS:从语音生成插值注解文本
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·数据挖掘
AITIME论道2 小时前
论文解读 | EMNLP2024 一种用于大语言模型版本更新的学习率路径切换训练范式
人工智能·深度学习·学习·机器学习·语言模型
明明真系叻3 小时前
第二十六周机器学习笔记:PINN求正反解求PDE文献阅读——正问题
人工智能·笔记·深度学习·机器学习·1024程序员节
88号技师4 小时前
2024年12月一区SCI-加权平均优化算法Weighted average algorithm-附Matlab免费代码
人工智能·算法·matlab·优化算法
IT猿手5 小时前
多目标应用(一):多目标麋鹿优化算法(MOEHO)求解10个工程应用,提供完整MATLAB代码
开发语言·人工智能·算法·机器学习·matlab
88号技师5 小时前
几款性能优秀的差分进化算法DE(SaDE、JADE,SHADE,LSHADE、LSHADE_SPACMA、LSHADE_EpSin)-附Matlab免费代码
开发语言·人工智能·算法·matlab·优化算法
2301_764441335 小时前
基于python语音启动电脑应用程序
人工智能·语音识别
HyperAI超神经5 小时前
未来具身智能的触觉革命!TactEdge传感器让机器人具备精细触觉感知,实现织物缺陷检测、灵巧操作控制
人工智能·深度学习·机器人·触觉传感器·中国地质大学·机器人智能感知·具身触觉
galileo20165 小时前
转化为MarkDown
人工智能
说私域6 小时前
私域电商逆袭密码:AI 智能名片小程序与商城系统如何梦幻联动
人工智能·小程序