Spark任务的执⾏流程

Spark 任务的执行流程涉及多个组件和步骤的协同工作,以下是其详细的执行流程:

提交任务

  • 编写应用程序:用户首先使用 Spark 支持的编程语言(如 Scala、Java、Python 等)编写 Spark 应用程序,在应用程序中定义计算逻辑,包括创建 RDD(弹性分布式数据集)、对 RDD 进行转换和行动操作等。
  • 提交任务到集群 :使用spark-submit脚本将应用程序提交到 Spark 集群。提交时需要指定相关参数,如主节点的地址、应用程序的 jar 包或脚本路径、应用程序所需的依赖等。

任务解析与资源分配

  • Driver 程序启动:提交任务后,在集群的某个节点上会启动一个 Driver 程序,它负责协调和管理整个任务的执行。Driver 程序会解析应用程序的逻辑,并将其分解为多个可并行执行的任务。
  • 与资源管理器交互:Driver 程序会与集群的资源管理器(如 YARN、Mesos 等)进行交互,请求分配执行任务所需的资源。资源管理器根据集群的资源状况和调度策略,为任务分配 Executor 进程所需的资源,包括 CPU、内存等。

任务执行

  • Executor 启动:在分配到资源的节点上,会启动 Executor 进程。每个 Executor 进程负责执行一部分任务,并在其所在的节点上处理数据。Executor 进程启动后,会向 Driver 程序注册自己,以便 Driver 程序可以向其分配任务。
  • 任务调度与执行 :Driver 程序根据任务的依赖关系和数据分布情况,将任务分发给各个 Executor 进程。Executor 进程从 HDFS 等分布式存储系统中读取数据,并在本地执行任务中的计算逻辑,对数据进行处理。在执行过程中,可能会涉及到 RDD 的转换操作,如mapfilterreduceByKey等,这些操作会在 Executor 进程中按照顺序依次执行。

数据通信与结果处理

  • Shuffle 操作:在任务执行过程中,如果需要进行数据的重新分区或聚合等操作,可能会触发 Shuffle 过程。Shuffle 操作会将数据在不同的 Executor 之间进行重新分布,以便后续的任务能够正确地处理数据。这是一个较为复杂和耗时的过程,涉及到数据的网络传输和磁盘 I/O。
  • 结果收集与返回:当所有的任务都执行完成后,Executor 进程会将结果返回给 Driver 程序。Driver 程序会收集这些结果,并根据应用程序的要求进行进一步的处理,如将结果保存到文件系统、数据库中,或者在控制台打印输出等。

任务结束与资源释放

  • 任务结束:Driver 程序在完成所有任务的处理和结果收集后,会向资源管理器发送请求,通知任务已经完成。
  • 资源释放:资源管理器收到任务完成的通知后,会回收分配给该任务的资源,包括停止 Executor 进程,释放 CPU、内存等资源,以便这些资源可以被其他任务使用。
相关推荐
CrazyClaz20 分钟前
分布式事务专题3
分布式·分布式事务
2301_8002561121 分钟前
8.3 查询优化 核心知识点总结
大数据·数据库·人工智能·sql·postgresql
samFuB22 分钟前
【工具变量】全国社保落户制度改革城市DID数据(2010-2025年)
大数据
互联网资讯26 分钟前
融合AI大模型的Geo优化系统服务商如何选?避坑指南
大数据·人工智能·ai搜索优化·geo系统·geo优化系统·geo系统搭建
搞科研的小刘选手28 分钟前
【广东财经大学主办】2026年人工智能与金融科技国际学术会议(IC-AIF 2026)
大数据·人工智能·金融·学术会议
绿蕉1 小时前
智能底盘:汽车革命的“新基石”
大数据·人工智能
GAOJ_K1 小时前
滚珠花键的使用时长与性能保持的量化关系
大数据·人工智能·科技·自动化·制造
EveryPossible1 小时前
页面学习1
大数据
TDengine (老段)1 小时前
网络延时对 TDengine TSDB 写入性能的影响:实验解析与实践建议
大数据·数据库·物联网·时序数据库·tdengine·涛思数据
ZKNOW甄知科技2 小时前
AI-ITSM的时代正在到来:深度解读Gartner最新报告
大数据·运维·人工智能·低代码·网络安全·微服务·重构