[源码解析] 模型并行分布式训练Megatron (2) --- 整体架构

link

[源码解析] 模型并行分布式训练Megatron (2) --- 整体架构

目录

  • [[源码解析] 模型并行分布式训练Megatron (2) --- 整体架构](#[源码解析] 模型并行分布式训练Megatron (2) --- 整体架构)
    • [0x00 摘要](#0x00 摘要)
    • [0x01 启动](#0x01 启动)
      • [1.1 分布式启动](#1.1 分布式启动)
      • [1.2 构造基础](#1.2 构造基础)
        • [1.2.1 获取模型](#1.2.1 获取模型)
        • [1.2.2 获取数据集](#1.2.2 获取数据集)
        • [1.2.3 步进函数](#1.2.3 步进函数)
          • [1.2.3.1 广播数据](#1.2.3.1 广播数据)
    • [0x02 Pretrain](#0x02 Pretrain)
    • [0x03 初始化](#0x03 初始化)
      • [3.1 initialize_megatron](#3.1 initialize_megatron)
      • [3.2 初始化分布式环境](#3.2 初始化分布式环境)
      • [3.3 初始化进程组全局变量](#3.3 初始化进程组全局变量)
    • [0x04 设置模型](#0x04 设置模型)
      • [4.1 setup_model_and_optimizer](#4.1 setup_model_and_optimizer)
      • [4.2 模型](#4.2 模型)
        • [4.2.1 BertModel](#4.2.1 BertModel)
        • [4.2.2 语言模型](#4.2.2 语言模型)
        • [4.2.3 ParallelTransformer](#4.2.3 ParallelTransformer)
          • [4.2.3.1 获取层数](#4.2.3.1 获取层数)
          • [4.2.3.2 前向传播](#4.2.3.2 前向传播)
      • [4.3 get_model](#4.3 get_model)
    • [0x05 数据并行](#0x05 数据并行)
      • [5.1 设置数据](#5.1 设置数据)
      • [5.2 DDP](#5.2 DDP)
        • [5.2.1 定义](#5.2.1 定义)
        • [5.2.2 初始化](#5.2.2 初始化)
        • [5.2.3 内存](#5.2.3 内存)
        • [5.2.4 支撑函数](#5.2.4 支撑函数)
        • [5.2.5 梯度规约](#5.2.5 梯度规约)
    • [0x06 训练](#0x06 训练)
      • [6.1 训练主体](#6.1 训练主体)
      • [6.2 训练step](#6.2 训练step)
      • [6.3 获取schedule](#6.3 获取schedule)
    • [0xFF 参考](#0xFF 参考)

0x00 摘要

NVIDIA Megatron 是一个基于 PyTorch 的分布式训练框架,用来训练超大Transformer语言模型,其通过综合应用了数据并行,Tensor并行和Pipeline并行来复现 GPT3,值得我们深入分析其背后机理。

本系列大概有6~7篇文章,通过论文和源码和大家一起学习研究。本文将对 Megatron 的基本架构做一下梳理。

本系列其他文章为:

[源码解析\] 模型并行分布式训练Megatron (1) --- 论文 \& 基础](https://www.cnblogs.com/rossiXYZ/p/15840803.html) ### 0x01 启动 #### 1.1 分布式启动 启动脚本在 examples/pretrain_bert_distributed.sh,其利用了 torch.distributed.launch 来启动多个进程。具体业务代码是 pretrain_bert.py。 因为 GPUS_PER_NODE 是8,所以 nproc_per_node 是8,这样,在本机上就启动了8个进程,每个进程之中含有**模型的一部分** 。++进程的 rank 是被 torch.distributed.launch 调用 elastic 自动分配的++。 ```shell #!/bin/bash ``` GPUS_PER_NODE=8 # Change for multinode config MASTER_ADDR=localhost MASTER_PORT=6000 NNODES=1 NODE_RANK=0 WORLD_SIZE= ( ( (( ((GPUS_PER_NODE\*$NNODES)) DATA_PATH=\_text_sentence CHECKPOINT_PATH=\ DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT" python -m torch.distributed.launch $DISTRIBUTED_ARGS pretrain_bert.py --num-layers 24 --hidden-size 1024 --num-attention-heads 16 --micro-batch-size 4 --global-batch-size 32 --seq-length 512 --max-position-embeddings 512 --train-iters 1000000 --save $CHECKPOINT_PATH --load $CHECKPOINT_PATH --data-path $DATA_PATH --vocab-file bert-vocab.txt --data-impl mmap --split 949,50,1 --distributed-backend nccl --lr 0.0001 --lr-decay-style linear --min-lr 1.0e-5 --lr-decay-iters 990000 --weight-decay 1e-2 --clip-grad 1.0 --lr-warmup-fraction .01 --log-interval 100 --save-interval 10000 --eval-interval 1000 --eval-iters 10 --fp16 #### 1.2 构造基础 pretrain_bert.py 会调用 pretrain 进行预训练。 ```python if __name__ == "__main__": `pretrain(train_valid_test_datasets_provider, model_provider, ModelType.encoder_or_decoder, forward_step, args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'}) ` ``` ##### 1.2.1 获取模型 model_provider返回模型普通版本(vanilla version)。所谓vanilla,我们指的是一个简单的cpu模型,没有 fp16或 ddp,但是已经被 Megatron 改造为并行的版本。 ```python def model_provider(pre_process=True, post_process=True): """Build the model.""" `print_rank_0('building BERT model ...') args = get_args() num_tokentypes = 2 if args.bert_binary_head else 0 model = BertModel( num_tokentypes=num_tokentypes, add_binary_head=args.bert_binary_head, parallel_output=True, pre_process=pre_process, post_process=post_process) return model ` ``` ##### 1.2.2 获取数据集 train_valid_test_datasets_provider 会接受train/valid/test数据集的大小,并返回 "train,valid,test" 数据集。 ```python def train_valid_test_datasets_provider(train_val_test_num_samples): """Build train, valid, and test datasets.""" args = get_args() `print_rank_0('> building train, validation, and test datasets ' 'for BERT ...') train_ds, valid_ds, test_ds = build_train_valid_test_datasets( data_prefix=args.data_path, data_impl=args.data_impl, splits_string=args.split, train_valid_test_num_samples=train_val_test_num_samples, max_seq_length=args.seq_length, masked_lm_prob=args.mask_prob, short_seq_prob=args.short_seq_prob, seed=args.seed, skip_warmup=(not args.mmap_warmup), binary_head=args.bert_binary_head) print_rank_0("> finished creating BERT datasets ...") return train_ds, valid_ds, test_ds ` ``` ##### 1.2.3 步进函数 forward_step函数接受一个"数据迭代器"和"模型",并返回一个"loss"标量,该标量带有一个字典,其中key:value是希望在训练期间监视的信息,例如"lm loss:value"。还要求此函数将"batch generator"添加到timers类中。 ```python def forward_step(data_iterator, model): """Forward step.""" args = get_args() `# Get the batch. tokens, types, sentence_order, loss_mask, lm_labels, padding_mask = get_batch( data_iterator) if not args.bert_binary_head: types = None # Forward pass through the model. output_tensor = model(tokens, padding_mask, tokentype_ids=types, lm_labels=lm_labels) return output_tensor, partial(loss_func, loss_mask, sentence_order) ` ``` ###### 1.2.3.1 广播数据 forward_step 会调用 get_batch 获取batch 数据,其内部会从迭代器获取数据,然后使用`broadcast_data`函数把输入数据从 rank 0 广播到所有tensor-model-parallel 其他 ranks之上。 注意,++数据并行是把不同数据加载到不同的rank之上,而 Tensor模型并行组之中每个rank都加载同样数据++。 ```python def get_batch(data_iterator): """Build the batch.""" `# Items and their type. keys = ['text', 'types', 'labels', 'is_random', 'loss_mask', 'padding_mask'] datatype = torch.int64 # Broadcast data. if data_iterator is not None: data = next(data_iterator) # 获取数据 else: data = None data_b = mpu.broadcast_data(keys, data, datatype) # 把数据广播到各个GPU # Unpack. tokens = data_b['text'].long() types = data_b['types'].long() sentence_order = data_b['is_random'].long() loss_mask = data_b['loss_mask'].float() lm_labels = data_b['labels'].long() padding_mask = data_b['padding_mask'].long() return tokens, types, sentence_order, loss_mask, lm_labels, padding_mask ` ``` broadcast_data 在每个model parallel group之上,把数据从rank 0发送到同组其他成员。 ```python def broadcast_data(keys, data, datatype): """Broadcast data from rank zero of each model parallel group to the members of the same model parallel group. `Arguments: keys: list of keys in the data disctionary to be broadcasted data: data dictionary of string keys and cpu tensor values. datatype: torch data type of all tensors in data associated with keys. """ # Build (key, size) and (key, number of elements) dictionaries along # with the total number of elements on all ranks. key_size, key_numel, total_numel = _build_key_size_numel_dictionaries(keys, data) # Pack on rank zero. if get_tensor_model_parallel_rank() == 0: # rank 0才压缩 # Check that all keys have the same data type. _check_data_types(keys, data, datatype) # Flatten the data associated with the keys flatten_data = torch.cat( [data[key].contiguous().view(-1) for key in keys], dim=0).cuda() else: flatten_data = torch.empty(total_numel, device=torch.cuda.current_device(), dtype=datatype) # Broadcast torch.distributed.broadcast(flatten_data, get_tensor_model_parallel_src_rank(), group=get_tensor_model_parallel_group()) # Unpack output = {} offset = 0 for key in keys: size = key_size[key] numel = key_numel[key] output[key] = flatten_data.narrow(0, offset, numel).view(size) offset += numel return output ` ``` get_tensor_model_parallel_src_rank 计算与张量模型并行组中第一个local rank对应的全局rank。 ```python def get_tensor_model_parallel_src_rank(): """Calculate the global rank corresponding to the first local rank in the tensor model parallel group.""" global_rank = torch.distributed.get_rank() local_world_size = get_tensor_model_parallel_world_size() return (global_rank // local_world_size) * local_world_size ``` 逻辑图具体如下,三个不同的函数分别为预训练提供不同的功能输入,做到了解耦。 ![](https://img-home.csdnimg.cn/images/20230724024159.png) ### 0x02 Pretrain BERT训练主要分为两步: * Pre-train:pre-train是迁移学习的基础,是训练token-level的语义理解。 * Fine-tuning:在已经训练好的语言模型基础之上,加入特定领域(比如金融医疗)的参数来重新训练,比如对于分类问题就可以在pre-train模型基础之上加上一个softmax,再使用语料 fine-tune。 Pre-train 主要如下: * 初始化Megatron。 * 使用model_provider设置模型、优化器和lr计划。 * 调用train_val_test_data_provider以获取train/val/test数据集。 * 使用forward_step_func训练模型。 具体代码如下: ```python def pretrain(train_valid_test_dataset_provider, model_provider, model_type, forward_step_func, extra_args_provider=None, args_defaults={}): """Main training program. `This function will run the followings in the order provided: 1) initialize Megatron. 2) setup model, optimizer and lr schedule using the model_provider. 3) call train_val_test_data_provider to get train/val/test datasets. 4) train the modle using the forward_step_func. """ # Initalize and get arguments, timers, and Tensorboard writer. initialize_megatron(extra_args_provider=extra_args_provider, args_defaults=args_defaults) # Adjust the startup time so it reflects the largest value. # This will be closer to what scheduler will see (outside of # image ... launches. global _TRAIN_START_TIME start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME]) torch.distributed.all_reduce(start_time_tensor, op=torch.distributed.ReduceOp.MIN) _TRAIN_START_TIME = start_time_tensor.item() args = get_args() timers = get_timers() # Model, optimizer, and learning rate. 使用model_provider设置模型、优化器和lr计划 model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider, model_type) # Data stuff. 调用train_val_test_data_provider以获取train/val/测试数据集 if args.virtual_pipeline_model_parallel_size is not None: all_data_iterators = [ build_train_valid_test_data_iterators(train_valid_test_dataset_provider) for _ in range(len(model)) ] train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators] valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators] test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators] else: train_data_iterator, valid_data_iterator, test_data_iterator \ = build_train_valid_test_data_iterators( train_valid_test_dataset_provider) iteration = 0 if args.do_train and args.train_iters > 0: iteration = train(forward_step_func, # 训练模型 model, optimizer, lr_scheduler, train_data_iterator, valid_data_iterator) if args.do_valid: prefix = 'the end of training for val data' evaluate_and_print_results(prefix, forward_step_func, valid_data_iterator, model, iteration, False) if args.save and iteration != 0: save_checkpoint(iteration, model, optimizer, lr_scheduler) if args.do_test: # Run on test data. prefix = 'the end of training for test data' evaluate_and_print_results(prefix, forward_step_func, test_data_iterator, model, 0, True) ` ``` 对于我们分析来说,initialize_megatron 是重点,这里初始化了 megatron。 ### 0x03 初始化 #### 3.1 initialize_megatron initialize_megatron 方法会设置全局变量,初始化分布式环境等等。 ```python def initialize_megatron(extra_args_provider=None, args_defaults={}, ignore_unknown_args=False, allow_no_cuda=False): """Set global variables, initialize distributed, and set autoresume and random seeds. `allow_no_cuda` should not be set unless using megatron for cpu only data processing. In general this arg should not be set unless you know what you are doing. Returns a function to finalize distributed env initialization (optionally, only when args.lazy_mpu_init == True) """ if not allow_no_cuda: # Make sure cuda is available. assert torch.cuda.is_available(), 'Megatron requires CUDA.' `# Parse args, build tokenizer, and set adlr-autoresume, # tensorboard-writer, and timers. set_global_variables(extra_args_provider=extra_args_provider, # 设置全局变量 args_defaults=args_defaults, ignore_unknown_args=ignore_unknown_args) # torch.distributed initialization def finish_mpu_init(): args = get_args() # Pytorch distributed. _initialize_distributed() # 设置分布式 # Random seeds for reproducibility. if args.rank == 0: print('> setting random seeds to {} ...'.format(args.seed)) _set_random_seed(args.seed) # Set pytorch JIT layer fusion options. _set_jit_fusion_options() args = get_args() if args.lazy_mpu_init: args.use_cpu_initialization=True # delayed initialization of DDP-related stuff # We only set basic DDP globals set_tensor_model_parallel_world_size(args.tensor_model_parallel_size) # and return function for external DDP manager # to call when it has DDP initialized set_tensor_model_parallel_rank(args.rank) return finish_mpu_init else: # Megatron's MPU is the master. Complete initialization right away. finish_mpu_init() # Autoresume. _init_autoresume() # Compile dependencies. _compile_dependencies() # No continuation function return None ` ``` #### 3.2 初始化分布式环境 _initialize_distributed 代码位于 megatron/initialize.py,此方法会: * 调用 torch.distributed.init_process_group 初始化分布式环境。 * 调用 mpu.initialize_model_parallel 来设置模型并行,数据并行等各种进程组,我们下文会重点讨论。 创建完worker进程之后,程序需要知道哪些进程在训练同一个模型,torch.distributed.init_process_group 就实现了这个功能。torch.distributed.init_process_group 会生成一个进程组,同组内进程训练同一个模型,也能确定用什么方式进行通信。进程组会给组内每个进程一个序号,就是gloabl rank,如果是多机并行,每个机器创建的进程之间也有一个序号,就是 local rank。如果是单机多卡并行,local rank 和 global rank是一致的。 ```python def _initialize_distributed(): """Initialize torch.distributed and mpu.""" args = get_args() `device_count = torch.cuda.device_count() if torch.distributed.is_initialized(): args.rank = torch.distributed.get_rank() args.world_size = torch.distributed.get_world_size() else: # Manually set the device ids. if device_count > 0: device = args.rank % device_count if args.local_rank is not None: assert args.local_rank == device, \ 'expected local-rank to be the same as rank % device-count.' else: args.local_rank = device torch.cuda.set_device(device) # Call the init process torch.distributed.init_process_group( # 初始化PyTorch分布式环境 backend=args.distributed_backend, world_size=args.world_size, rank=args.rank, timeout=timedelta(minutes=10)) # Set the tensor model-parallel, pipeline model-parallel, and # data-parallel communicators. if device_count > 0: if mpu.model_parallel_is_initialized(): print('model parallel is already initialized') else: # 初始化模型并行,比如设置各种进程组 mpu.initialize_model_parallel(args.tensor_model_parallel_size, args.pipeline_model_parallel_size, args.virtual_pipeline_model_parallel_size, args.pipeline_model_parallel_split_rank) ` ``` #### 3.3 初始化进程组全局变量 因为调用了 mpu.initialize_model_parallel 来设置模型并行,数据并行等各种进程组,所以我们假定目前进程组都已经设置成功,所以每个 rank 对应的进程都有自己的全局变量。假定目前有16个GPU,属于两个node,rank 0 ~7 属于第一个节点,rank 8 ~ 15 属于第二个节点。下面的 gi 指的是第 i 个 GPU。 * _TENSOR_MODEL_PARALLEL_GROUP :当前 rank 所属于的Intra-layer model parallel group,就是tensor 并行进程组。 * 假如每一层分为两个tensor,则 _TENSOR_MODEL_PARALLEL_GROUP 例子为:\[g0, g1\], \[g2, g3\], \[g4, g5\], \[g6, g7\], \[g8, g9\], \[g10, g11\], \[g12, g13\], \[g14, g15\]。 * _PIPELINE_MODEL_PARALLEL_GROUP :当前 rank 所属于的Intra-layer model parallel group,就是流水线进程组。 * 假如流水线深度为4,则例子为 \[g0, g4, g8, g12\], \[g1, g5, g9, g13\], \[g2, g6, g10, g14\], \[g3, g7, g11, g15\]。 * _MODEL_PARALLEL_GROUP :当前 rank 所属于的模型并行进程组,包括了以上两组。 * 针对我们例子,就是完整模型被复制了两份,两份分别对应的 GPU 具体是\[0, 1, 4, 5, 8, 9, 12, 13\],\[2, 3, 6, 7, 10, 11, 14, 15

  • _EMBEDDING_GROUP : 嵌入对应的进程组。
  • _DATA_PARALLEL_GROUP :当前 rank 所属于的Data parallel group。
    • 假如数据并行度数为2,则例子为[g0, g2], [g1, g3], [g4, g6], [g5, g7], [g8, g10], [g9, g11], [g12, g14], [g13, g15]。
python 复制代码
# Intra-layer model parallel group that the current rank belongs to.
_TENSOR_MODEL_PARALLEL_GROUP = None
# Inter-layer model parallel group that the current rank belongs to.
_PIPELINE_MODEL_PARALLEL_GROUP = None
# Model parallel group (both intra- and pipeline) that the current rank belongs to.
_MODEL_PARALLEL_GROUP = None
# Embedding group.
_EMBEDDING_GROUP = None
# Data parallel group that the current rank belongs to.
_DATA_PARALLEL_GROUP = None

0x04 设置模型

在 Pretrain 之中,会调用如下来设置模型,优化器等等。

python 复制代码
# Model, optimizer, and learning rate. 使用model_provider设置模型、优化器和lr计划
model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider,
                                                           model_type)

4.1 setup_model_and_optimizer

setup_model_and_optimizer 方法会设置模型和优化器,其中重点是get_model。

python 复制代码
def setup_model_and_optimizer(model_provider_func, model_type):
    """Setup model and optimizer."""
    args = get_args()
    model = get_model(model_provider_func, model_type)
    unwrapped_model = unwrap_model(model,
                                   (torchDDP, LocalDDP, Float16Module))
    optimizer = get_megatron_optimizer(unwrapped_model)
    lr_scheduler = get_learning_rate_scheduler(optimizer)
`<span class="hljs-keyword">if</span> args.load <span class="hljs-keyword">is</span> <span class="hljs-keyword">not</span> <span class="hljs-literal">None</span>:
    timers = get_timers()
    <span class="hljs-comment"># Extra barrier is added to make sure all ranks report the</span>
    <span class="hljs-comment"># max time.</span>
    torch.distributed.barrier()
    args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
    torch.distributed.barrier()
<span class="hljs-keyword">else</span>:
    args.iteration = <span class="hljs-number">0</span>

<span class="hljs-comment"># We only support local DDP with multiple micro-batches.</span>
<span class="hljs-keyword">if</span> <span class="hljs-built_in">len</span>(model) &gt; <span class="hljs-number">1</span> <span class="hljs-keyword">or</span> mpu.get_pipeline_model_parallel_world_size() &gt; <span class="hljs-number">1</span>:
    <span class="hljs-keyword">assert</span> args.DDP_impl == <span class="hljs-string">'local'</span>

<span class="hljs-comment"># get model without FP16 and/or TorchDDP wrappers</span>
<span class="hljs-keyword">if</span> args.iteration == <span class="hljs-number">0</span> <span class="hljs-keyword">and</span> <span class="hljs-built_in">len</span>(unwrapped_model) == <span class="hljs-number">1</span> \
    <span class="hljs-keyword">and</span> <span class="hljs-built_in">hasattr</span>(unwrapped_model[<span class="hljs-number">0</span>], <span class="hljs-string">'init_state_dict_from_bert'</span>):
    unwrapped_model[<span class="hljs-number">0</span>].init_state_dict_from_bert()
    <span class="hljs-keyword">if</span> args.fp16:
        optimizer.reload_model_params()

<span class="hljs-keyword">return</span> model, optimizer, lr_scheduler
`

4.2 模型

4.2.1 BertModel

我们首先看看 BertModel 的初始化函数,略过其他功能函数。其主要调用了 get_language_model。

python 复制代码
class BertModel(MegatronModule):
    """Bert Language model."""
`<span class="hljs-keyword">def</span> <span class="hljs-title function_">__init__</span>(<span class="hljs-params">self,
             num_tokentypes=<span class="hljs-number">2</span>,
             add_binary_head=<span class="hljs-literal">True</span>,
             parallel_output=<span class="hljs-literal">True</span>,
             pre_process=<span class="hljs-literal">True</span>,
             post_process=<span class="hljs-literal">True</span></span>):
    <span class="hljs-built_in">super</span>(BertModel, self).__init__()
    args = get_args()

    self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy
    self.add_binary_head = add_binary_head
    self.parallel_output = parallel_output
    self.pre_process = pre_process
    self.post_process = post_process

    init_method = init_method_normal(args.init_method_std)
    scaled_init_method = scaled_init_method_normal(args.init_method_std,
                                                   args.num_layers)

			<span class="hljs-comment"># 获取语言模型</span>
    self.language_model, self._language_model_key = get_language_model(
        num_tokentypes=num_tokentypes,
        add_pooler=self.add_binary_head,
        encoder_attn_mask_type=AttnMaskType.padding,
        init_method=init_method,
        scaled_init_method=scaled_init_method,
        pre_process=self.pre_process,
        post_process=self.post_process)

    self.initialize_word_embeddings(init_method_normal)
    <span class="hljs-keyword">if</span> self.post_process: <span class="hljs-comment"># 如果是最后一层,会特殊处理</span>
        self.lm_head = BertLMHead(
            self.word_embeddings_weight().size(<span class="hljs-number">0</span>),
            args.hidden_size, init_method, args.layernorm_epsilon, parallel_output)
        self._lm_head_key = <span class="hljs-string">'lm_head'</span>
        self.binary_head = <span class="hljs-literal">None</span>
        <span class="hljs-keyword">if</span> self.add_binary_head:
            self.binary_head = get_linear_layer(args.hidden_size, <span class="hljs-number">2</span>,
                                                init_method)
            self._binary_head_key = <span class="hljs-string">'binary_head'</span>
`
4.2.2 语言模型

get_language_model 会获取一个 TransformerLanguageModel。

python 复制代码
def get_language_model(num_tokentypes, add_pooler,
                       encoder_attn_mask_type, init_method=None,
                       scaled_init_method=None, add_encoder=True,
                       add_decoder=False,
                       decoder_attn_mask_type=AttnMaskType.causal,
                       pre_process=True, post_process=True):
    """Build language model and return along with the key to save."""
    args = get_args()
`<span class="hljs-keyword">if</span> init_method <span class="hljs-keyword">is</span> <span class="hljs-literal">None</span>:
    init_method = init_method_normal(args.init_method_std)

<span class="hljs-keyword">if</span> scaled_init_method <span class="hljs-keyword">is</span> <span class="hljs-literal">None</span>:
    scaled_init_method = scaled_init_method_normal(args.init_method_std,
                                                   args.num_layers)

<span class="hljs-comment"># Language model.</span>
language_model = TransformerLanguageModel(
    init_method,
    scaled_init_method,
    encoder_attn_mask_type,
    num_tokentypes=num_tokentypes,
    add_encoder=add_encoder,
    add_decoder=add_decoder,
    decoder_attn_mask_type=decoder_attn_mask_type,
    add_pooler=add_pooler,
    pre_process=pre_process,
    post_process=post_process
)
<span class="hljs-comment"># key used for checkpoints.</span>
language_model_key = <span class="hljs-string">'language_model'</span>

<span class="hljs-keyword">return</span> language_model, language_model_key
`

TransformerLanguageModel 就是具体的语言模型,其中重要的是 ParallelTransformer。这里会依据传入的配置来进行生成。

  • 如果是第一层,即有 pre_process,则会加入 embedding layer。
  • 如果是中间层,则会根据 encoder 还是 decoder 来生成对应的 ParallelTransformer。
  • 如果是最后一层,即有 post_process,则会加入 Pooler,在外层 BertModel 也会有对应处理。
python 复制代码
class TransformerLanguageModel(MegatronModule):
    """Transformer language model.
`Arguments:
    transformer_hparams: transformer hyperparameters
    vocab_size: vocabulary size
    max_sequence_length: maximum size of sequence. This
                         is used for positional embedding
    embedding_dropout_prob: dropout probability for embeddings
    num_tokentypes: size of the token-type embeddings. 0 value
                    will ignore this embedding
"""</span>

<span class="hljs-keyword">def</span> <span class="hljs-title function_">__init__</span>(<span class="hljs-params">self,
             init_method,
             output_layer_init_method,
             encoder_attn_mask_type,
             num_tokentypes=<span class="hljs-number">0</span>,
             add_encoder=<span class="hljs-literal">True</span>,
             add_decoder=<span class="hljs-literal">False</span>,
             decoder_attn_mask_type=AttnMaskType.causal,
             add_pooler=<span class="hljs-literal">False</span>,
             pre_process=<span class="hljs-literal">True</span>,
             post_process=<span class="hljs-literal">True</span></span>):
    <span class="hljs-built_in">super</span>(TransformerLanguageModel, self).__init__()
    args = get_args()

    self.pre_process = pre_process
    self.post_process = post_process
    self.hidden_size = args.hidden_size
    self.num_tokentypes = num_tokentypes
    self.init_method = init_method
    self.add_encoder = add_encoder
    self.encoder_attn_mask_type = encoder_attn_mask_type
    self.add_decoder = add_decoder
    self.decoder_attn_mask_type = decoder_attn_mask_type
    self.add_pooler = add_pooler
    self.encoder_hidden_state = <span class="hljs-literal">None</span>

    <span class="hljs-comment"># Embeddings.</span>
    <span class="hljs-keyword">if</span> self.pre_process:
        self.embedding = Embedding(self.hidden_size,
                                   args.padded_vocab_size,
                                   args.max_position_embeddings,
                                   args.hidden_dropout,
                                   self.init_method,
                                   self.num_tokentypes)
        self._embedding_key = <span class="hljs-string">'embedding'</span>

    <span class="hljs-comment"># Transformer.</span>
    <span class="hljs-comment"># Encoder (usually set to True, False if part of an encoder-decoder</span>
    <span class="hljs-comment"># architecture and in encoder-only stage).</span>
    <span class="hljs-keyword">if</span> self.add_encoder:
        self.encoder = ParallelTransformer(
            self.init_method,
            output_layer_init_method,
            self_attn_mask_type=self.encoder_attn_mask_type,
            pre_process=self.pre_process,
            post_process=self.post_process
        )
        self._encoder_key = <span class="hljs-string">'encoder'</span>
    <span class="hljs-keyword">else</span>:
        self.encoder = <span class="hljs-literal">None</span>

    <span class="hljs-comment"># Decoder (usually set to False, True if part of an encoder-decoder</span>
    <span class="hljs-comment"># architecture and in decoder-only stage).</span>
    <span class="hljs-keyword">if</span> self.add_decoder:
        <span class="hljs-comment"># Temporary assertion until we verify correctness of pipeline parallelism</span>
        <span class="hljs-comment"># implementation of T5.</span>
        self.decoder = ParallelTransformer(
            self.init_method,
            output_layer_init_method,
            layer_type=LayerType.decoder,
            self_attn_mask_type=self.decoder_attn_mask_type,
            pre_process=self.pre_process,
            post_process=self.post_process)
        self._decoder_key = <span class="hljs-string">'decoder'</span>
    <span class="hljs-keyword">else</span>:
        self.decoder = <span class="hljs-literal">None</span>

    <span class="hljs-keyword">if</span> self.post_process:
        <span class="hljs-comment"># Pooler.</span>
        <span class="hljs-keyword">if</span> self.add_pooler:
            self.pooler = Pooler(self.hidden_size, self.init_method)
            self._pooler_key = <span class="hljs-string">'pooler'</span>
`
4.2.3 ParallelTransformer

这里会调用 ParallelTransformerLayer 生成具体的 Transformer层,我们会在后文中进行分析。

即,++ParallelTransformer 包括多个 Transformer,其中每层 Transformer 是一个 ParallelTransformerLayer++。

python 复制代码
class ParallelTransformer(MegatronModule):
    """Transformer class."""
`<span class="hljs-keyword">def</span> <span class="hljs-title function_">__init__</span>(<span class="hljs-params">self, init_method, output_layer_init_method,
             layer_type=LayerType.encoder,
             self_attn_mask_type=AttnMaskType.padding,
             pre_process=<span class="hljs-literal">True</span>, post_process=<span class="hljs-literal">True</span></span>):
    <span class="hljs-built_in">super</span>(ParallelTransformer, self).__init__()
    args = get_args()

    self.bf16 = args.bf16
    self.fp32_residual_connection = args.fp32_residual_connection
    self.pre_process = pre_process
    self.post_process = post_process
    self.input_tensor = <span class="hljs-literal">None</span>

    <span class="hljs-comment"># Store activation checkpoiting flag.</span>
    self.activations_checkpoint_method = args.activations_checkpoint_method
    self.activations_checkpoint_num_layers = args.activations_checkpoint_num_layers
    self.distribute_checkpointed_activations = args.distribute_checkpointed_activations

    <span class="hljs-comment"># Number of layers.</span>
    self.num_layers = mpu.get_num_layers( <span class="hljs-comment"># 获得本Transformer的具体层数</span>
        args, args.model_type == ModelType.encoder_and_decoder)

    <span class="hljs-comment"># Transformer layers.</span>
    <span class="hljs-keyword">def</span> <span class="hljs-title function_">build_layer</span>(<span class="hljs-params">layer_number</span>):
        <span class="hljs-keyword">return</span> ParallelTransformerLayer( <span class="hljs-comment"># 返回一层 Transformmer</span>
            init_method,
            output_layer_init_method,
            layer_number,
            layer_type=layer_type,
            self_attn_mask_type=self_attn_mask_type)
    <span class="hljs-keyword">if</span> args.virtual_pipeline_model_parallel_size <span class="hljs-keyword">is</span> <span class="hljs-keyword">not</span> <span class="hljs-literal">None</span>:
        <span class="hljs-comment"># Number of layers in each model chunk is the number of layers in the stage,</span>
        <span class="hljs-comment"># divided by the number of model chunks in a stage.</span>
        self.num_layers = self.num_layers // args.virtual_pipeline_model_parallel_size
        <span class="hljs-comment"># With 8 layers, 2 stages, and 4 model chunks, we want an assignment of</span>
        <span class="hljs-comment"># layers to stages like (each list is a model chunk):</span>
        <span class="hljs-comment"># Stage 0: [0]  [2]  [4]  [6]</span>
        <span class="hljs-comment"># Stage 1: [1]  [3]  [5]  [7]</span>
        <span class="hljs-comment"># With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of</span>
        <span class="hljs-comment"># layers to stages like (each list is a model chunk):</span>
        <span class="hljs-comment"># Stage 0: [0, 1]  [4, 5]</span>
        <span class="hljs-comment"># Stage 1: [2, 3]  [6, 7]</span>
        offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
            args.num_layers // args.virtual_pipeline_model_parallel_size) + \
            (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
    <span class="hljs-keyword">else</span>:
        <span class="hljs-comment"># Each stage gets a contiguous set of layers.</span>
        offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers

    self.layers = torch.nn.ModuleList( <span class="hljs-comment"># 生成 num_layers 个 Transformer</span>
        [build_layer(i + <span class="hljs-number">1</span> + offset) <span class="hljs-keyword">for</span> i <span class="hljs-keyword">in</span> <span class="hljs-built_in">range</span>(self.num_layers)])

    <span class="hljs-keyword">if</span> self.post_process:
        <span class="hljs-comment"># Final layer norm before output.</span>
        self.final_layernorm = LayerNorm(
            args.hidden_size,
            eps=args.layernorm_epsilon,
            no_persist_layer_norm=args.no_persist_layer_norm)
`

目前逻辑如下,我们假定有两个 transformer:

4.2.3.1 获取层数

这里一个重点就是获取层数,即获取本模型在并行处理状况下,应该拥有多少层。如果模型一共64层,流水线深度为16,则并行每个阶段有4层,则本子模型拥有4层。

python 复制代码
def get_num_layers(args, is_encoder_and_decoder_model):
    """Compute the number of transformer layers resident on the current rank."""
    if get_pipeline_model_parallel_world_size() > 1:
        if is_encoder_and_decoder_model:
            assert args.pipeline_model_parallel_split_rank is not None
            num_ranks_in_encoder = args.pipeline_model_parallel_split_rank
            num_ranks_in_decoder = get_pipeline_model_parallel_world_size() - num_ranks_in_encoder
            if is_pipeline_stage_before_split():
                num_layers = args.num_layers // num_ranks_in_encoder
            else:
                num_layers = args.num_layers // num_ranks_in_decoder
        else:
            num_layers = args.num_layers // get_pipeline_model_parallel_world_size()
    else:
        num_layers = args.num_layers
    return num_layers

get_pipeline_model_parallel_world_size 获取本流水线组world size数目,就是流水线深度。

python 复制代码
def get_pipeline_model_parallel_world_size():
    """Return world size for the pipeline model parallel group."""
    global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    if _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE is not None:
        return _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    return torch.distributed.get_world_size(group=get_pipeline_model_parallel_group())

_MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE 的意思是流水线深度 p,就是纵向切 p-1刀。比如一共 12 层,纵向切 5 刀,则有 6 个stage,每个 stage 有 2 层。

4.2.3.2 前向传播

我们接着看看其前向传播函数,这里主要就是调用内部 ParallelTransformerLayer 的 forward 方法,如果是第一层或者最后一层,则做特殊处理。

python 复制代码
def forward(self, hidden_states, attention_mask,
            encoder_output=None, enc_dec_attn_mask=None,
            inference_params=None):
`<span class="hljs-keyword">if</span> self.pre_process:
    <span class="hljs-comment"># Data format change to avoid explicit tranposes : [b s h] --&gt; [s b h].</span>
    <span class="hljs-comment"># If the input flag for fp32 residual connection is set, convert for float.</span>
    <span class="hljs-keyword">if</span> self.fp32_residual_connection:
        hidden_states = hidden_states.transpose(<span class="hljs-number">0</span>, <span class="hljs-number">1</span>).contiguous().<span class="hljs-built_in">float</span>()
    <span class="hljs-comment"># Otherwise, leave it as is.</span>
    <span class="hljs-keyword">else</span>:
        hidden_states = hidden_states.transpose(<span class="hljs-number">0</span>, <span class="hljs-number">1</span>).contiguous()
<span class="hljs-keyword">else</span>:
    <span class="hljs-comment"># See set_input_tensor()</span>
    hidden_states = self.input_tensor

<span class="hljs-keyword">if</span> encoder_output <span class="hljs-keyword">is</span> <span class="hljs-keyword">not</span> <span class="hljs-literal">None</span>:
     encoder_output = encoder_output.transpose(<span class="hljs-number">0</span>, <span class="hljs-number">1</span>).contiguous()

<span class="hljs-keyword">if</span> self.activations_checkpoint_method <span class="hljs-keyword">is</span> <span class="hljs-keyword">not</span> <span class="hljs-literal">None</span>:
    hidden_states = self._checkpointed_forward(hidden_states,
                                               attention_mask,
                                               encoder_output,
                                               enc_dec_attn_mask)
<span class="hljs-keyword">else</span>:
    <span class="hljs-keyword">for</span> index <span class="hljs-keyword">in</span> <span class="hljs-built_in">range</span>(self.num_layers):
        layer = self._get_layer(index)
        hidden_states = layer( <span class="hljs-comment"># 调用ParallelTransformerLayer的forward函数</span>
            hidden_states,
            attention_mask,
            encoder_output=encoder_output,
            enc_dec_attn_mask=enc_dec_attn_mask,
            inference_params=inference_params)


<span class="hljs-comment"># Final layer norm.</span>
<span class="hljs-keyword">if</span> self.post_process:
    <span class="hljs-comment"># Reverting data format change [s b h] --&gt; [b s h].</span>
    hidden_states = hidden_states.transpose(<span class="hljs-number">0</span>, <span class="hljs-number">1</span>).contiguous()
    output = self.final_layernorm(hidden_states)
<span class="hljs-keyword">else</span>:
    output = hidden_states

<span class="hljs-keyword">return</span> output
`

4.3 get_model

现在让我们回到 get_model,把生成模型的流程整理出来。

BERT之中含有多个transformer,所以直接按照层数切分,每一层是一模一样的transformer layer。前面提到了,++在我们样例之中启动了8个进程,每个进程里面有一个子模型,即原始BERT模型的部分层++。但是怎么知道每个子模型包含了多少层?答案是:因为已经建立了各种进程组,所以 get_model 方法会依据目前进程组情况进行处理。单个进程内模型获取如下:

  • 如果是有 virtual 设置,则会遍历 virtual size,生成对应数目的模型(BertModel)。
  • 否则如果是 encoder_and_decoder,则针对split进行配置。
  • 设置 tensor model parallel 属性。
  • 把本模型放置到GPU之上。
  • 如果需要数据并行,则配置DDP。

具体代码如下:

python 复制代码
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
    """Build the model."""
    args = get_args()
    args.model_type = model_type
`<span class="hljs-comment"># Build model.</span>
<span class="hljs-keyword">if</span> mpu.get_pipeline_model_parallel_world_size() &gt; <span class="hljs-number">1</span> <span class="hljs-keyword">and</span> \
   args.virtual_pipeline_model_parallel_size <span class="hljs-keyword">is</span> <span class="hljs-keyword">not</span> <span class="hljs-literal">None</span>: <span class="hljs-comment"># 有virtual设置,后续会提到</span>
    model = []
    <span class="hljs-keyword">for</span> i <span class="hljs-keyword">in</span> <span class="hljs-built_in">range</span>(args.virtual_pipeline_model_parallel_size): <span class="hljs-comment"># 遍历virtual</span>
      	<span class="hljs-comment"># 设置rank,主要是为了看是不是第一层,最后一层</span>
        mpu.set_virtual_pipeline_model_parallel_rank(i) 
        <span class="hljs-comment"># Set pre_process and post_process only after virtual rank is set.</span>
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
        this_model = model_provider_func( <span class="hljs-comment"># 获取原始模型 BertModel</span>
            pre_process=pre_process,
            post_process=post_process
        )
        this_model.model_type = model_type
        model.append(this_model) <span class="hljs-comment"># 模型列表之中添加一个新的 BertModel</span>
<span class="hljs-keyword">else</span>:
    pre_process = mpu.is_pipeline_first_stage() <span class="hljs-comment"># 是不是第一层</span>
    post_process = mpu.is_pipeline_last_stage() <span class="hljs-comment"># 是不是最后一层</span>
    add_encoder = <span class="hljs-literal">True</span>
    add_decoder = <span class="hljs-literal">True</span>
    <span class="hljs-keyword">if</span> model_type == ModelType.encoder_and_decoder:
        <span class="hljs-keyword">if</span> mpu.get_pipeline_model_parallel_world_size() &gt; <span class="hljs-number">1</span>:
            rank = mpu.get_pipeline_model_parallel_rank()
            split_rank = args.pipeline_model_parallel_split_rank
            world_size = mpu.get_pipeline_model_parallel_world_size()
            pre_process = rank == <span class="hljs-number">0</span> <span class="hljs-keyword">or</span> rank == split_rank  <span class="hljs-comment"># 是不是第一层</span>
            post_process = (rank == (split_rank - <span class="hljs-number">1</span>)) <span class="hljs-keyword">or</span> ( <span class="hljs-comment"># 是不是最后一层</span>
                    rank == (world_size - <span class="hljs-number">1</span>))
            add_encoder = mpu.is_pipeline_stage_before_split()
            add_decoder = mpu.is_pipeline_stage_after_split()
        model = model_provider_func( <span class="hljs-comment"># 获取原始模型</span>
            pre_process=pre_process,
            post_process=post_process,
            add_encoder=add_encoder,
            add_decoder=add_decoder)
    <span class="hljs-keyword">else</span>:
        model = model_provider_func( <span class="hljs-comment"># 获取原始模型</span>
            pre_process=pre_process,
            post_process=post_process
        )
    model.model_type = model_type

<span class="hljs-keyword">if</span> <span class="hljs-keyword">not</span> <span class="hljs-built_in">isinstance</span>(model, <span class="hljs-built_in">list</span>):
    model = [model]

<span class="hljs-comment"># Set tensor model parallel attributes if not set.</span>
<span class="hljs-comment"># Only parameters that are already tensor model parallel have these</span>
<span class="hljs-comment"># attributes set for them. We should make sure the default attributes</span>
<span class="hljs-comment"># are set for all params so the optimizer can use them.</span>
<span class="hljs-keyword">for</span> model_module <span class="hljs-keyword">in</span> model:
    <span class="hljs-keyword">for</span> param <span class="hljs-keyword">in</span> model_module.parameters():
        mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)

<span class="hljs-comment"># GPU allocation.</span>
<span class="hljs-keyword">for</span> model_module <span class="hljs-keyword">in</span> model: <span class="hljs-comment"># 把本模型放置到GPU之上</span>
    model_module.cuda(torch.cuda.current_device())

<span class="hljs-comment"># Fp16 conversion.</span>
<span class="hljs-keyword">if</span> args.fp16 <span class="hljs-keyword">or</span> args.bf16:
    model = [Float16Module(model_module, args) <span class="hljs-keyword">for</span> model_module <span class="hljs-keyword">in</span> model]

<span class="hljs-keyword">if</span> wrap_with_ddp: <span class="hljs-comment"># 如果需要数据并行,则配置DDP</span>
    <span class="hljs-keyword">if</span> args.DDP_impl == <span class="hljs-string">'torch'</span>:
        i = torch.cuda.current_device()
        model = [torchDDP(model_module, device_ids=[i], output_device=i,
                          process_group=mpu.get_data_parallel_group())
                 <span class="hljs-keyword">for</span> model_module <span class="hljs-keyword">in</span> model]

    <span class="hljs-keyword">elif</span> args.DDP_impl == <span class="hljs-string">'local'</span>:
        model = [LocalDDP(model_module,
                          args.accumulate_allreduce_grads_in_fp32,
                          args.use_contiguous_buffers_in_local_ddp)
                 <span class="hljs-keyword">for</span> model_module <span class="hljs-keyword">in</span> model]

    <span class="hljs-keyword">else</span>:
        <span class="hljs-keyword">raise</span> NotImplementedError(<span class="hljs-string">'Unknown DDP implementation specified: '</span>
                                  <span class="hljs-string">'{}. Exiting.'</span>.<span class="hljs-built_in">format</span>(args.DDP_impl))

<span class="hljs-keyword">return</span> model
`

单个进程内的逻辑大致如下,这里 torchDDP 的意思是把 BertModel 之中的 module 用 torchDDP 来封装。

0x05 数据并行

5.1 设置数据

build_train_valid_test_data_iterators 方法会对数据进行处理,提供了 train,valid,test 三种不同的数据集。

python 复制代码
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
    args = get_args()
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)
`<span class="hljs-comment"># Backward compatibility, assume fixed batch size.</span>
<span class="hljs-keyword">if</span> args.iteration &gt; <span class="hljs-number">0</span> <span class="hljs-keyword">and</span> args.consumed_train_samples == <span class="hljs-number">0</span>:
    args.consumed_train_samples = args.iteration * args.global_batch_size
<span class="hljs-keyword">if</span> args.iteration &gt; <span class="hljs-number">0</span> <span class="hljs-keyword">and</span> args.consumed_valid_samples == <span class="hljs-number">0</span>:
    <span class="hljs-keyword">if</span> args.train_samples <span class="hljs-keyword">is</span> <span class="hljs-literal">None</span>:
        args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
            args.eval_iters * args.global_batch_size

<span class="hljs-comment"># Data loader only on rank 0 of each model parallel group.</span>
<span class="hljs-keyword">if</span> mpu.get_tensor_model_parallel_rank() == <span class="hljs-number">0</span>:

    <span class="hljs-comment"># Number of train/valid/test samples.</span>
    <span class="hljs-keyword">if</span> args.train_samples:
        train_samples = args.train_samples
    <span class="hljs-keyword">else</span>:
        train_samples = args.train_iters * args.global_batch_size
    eval_iters = (args.train_iters // args.eval_interval + <span class="hljs-number">1</span>) * \
                 args.eval_iters
    test_iters = args.eval_iters
    train_val_test_num_samples = [train_samples,
                                  eval_iters * args.global_batch_size,
                                  test_iters * args.global_batch_size]

    <span class="hljs-comment"># Build the datasets.</span>
    train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
        train_val_test_num_samples)

    <span class="hljs-comment"># Build dataloders.</span>
    train_dataloader = build_pretraining_data_loader(
        train_ds, args.consumed_train_samples)
    valid_dataloader = build_pretraining_data_loader(
        valid_ds, args.consumed_valid_samples)
    test_dataloader = build_pretraining_data_loader(test_ds, <span class="hljs-number">0</span>)

    <span class="hljs-comment"># Flags to know if we need to do training/validation/testing.</span>
    do_train = train_dataloader <span class="hljs-keyword">is</span> <span class="hljs-keyword">not</span> <span class="hljs-literal">None</span> <span class="hljs-keyword">and</span> args.train_iters &gt; <span class="hljs-number">0</span>
    do_valid = valid_dataloader <span class="hljs-keyword">is</span> <span class="hljs-keyword">not</span> <span class="hljs-literal">None</span> <span class="hljs-keyword">and</span> args.eval_iters &gt; <span class="hljs-number">0</span>
    do_test = test_dataloader <span class="hljs-keyword">is</span> <span class="hljs-keyword">not</span> <span class="hljs-literal">None</span> <span class="hljs-keyword">and</span> args.eval_iters &gt; <span class="hljs-number">0</span>
    <span class="hljs-comment"># Need to broadcast num_tokens and num_type_tokens.</span>
    flags = torch.cuda.LongTensor(
        [<span class="hljs-built_in">int</span>(do_train), <span class="hljs-built_in">int</span>(do_valid), <span class="hljs-built_in">int</span>(do_test)])
<span class="hljs-keyword">else</span>:
    flags = torch.cuda.LongTensor([<span class="hljs-number">0</span>, <span class="hljs-number">0</span>, <span class="hljs-number">0</span>])

<span class="hljs-comment"># Broadcast num tokens.</span>
torch.distributed.broadcast(flags,
                            mpu.get_tensor_model_parallel_src_rank(),
                            group=mpu.get_tensor_model_parallel_group())
args.do_train = flags[<span class="hljs-number">0</span>].item()
args.do_valid = flags[<span class="hljs-number">1</span>].item()
args.do_test = flags[<span class="hljs-number">2</span>].item()

<span class="hljs-comment"># Build iterators.</span>
dl_type = args.dataloader_type

<span class="hljs-keyword">if</span> train_dataloader <span class="hljs-keyword">is</span> <span class="hljs-keyword">not</span> <span class="hljs-literal">None</span>:
    train_data_iterator = <span class="hljs-built_in">iter</span>(train_dataloader) <span class="hljs-keyword">if</span> dl_type == <span class="hljs-string">'single'</span> \
                          <span class="hljs-keyword">else</span> <span class="hljs-built_in">iter</span>(cyclic_iter(train_dataloader))
<span class="hljs-keyword">else</span>:
    train_data_iterator = <span class="hljs-literal">None</span>

<span class="hljs-keyword">if</span> valid_dataloader <span class="hljs-keyword">is</span> <span class="hljs-keyword">not</span> <span class="hljs-literal">None</span>:
    valid_data_iterator = <span class="hljs-built_in">iter</span>(valid_dataloader) <span class="hljs-keyword">if</span> dl_type == <span class="hljs-string">'single'</span> \
                          <span class="hljs-keyword">else</span> <span class="hljs-built_in">iter</span>(cyclic_iter(valid_dataloader))
<span class="hljs-keyword">else</span>:
    valid_data_iterator = <span class="hljs-literal">None</span>

<span class="hljs-keyword">if</span> test_dataloader <span class="hljs-keyword">is</span> <span class="hljs-keyword">not</span> <span class="hljs-literal">None</span>:
    test_data_iterator = <span class="hljs-built_in">iter</span>(test_dataloader) <span class="hljs-keyword">if</span> dl_type == <span class="hljs-string">'single'</span> \
                         <span class="hljs-keyword">else</span> <span class="hljs-built_in">iter</span>(cyclic_iter(test_dataloader))
<span class="hljs-keyword">else</span>:
    test_data_iterator = <span class="hljs-literal">None</span>

<span class="hljs-keyword">return</span> train_data_iterator, valid_data_iterator, test_data_iterator
`

5.2 DDP

在 get_model 之中,有如下代码使用 DDP。

python 复制代码
from megatron.model import DistributedDataParallel as LocalDDP
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

if wrap_with_ddp:
if args.DDP_impl == 'torch':

i = torch.cuda.current_device()

model = [torchDDP(model_module, device_ids=[i], output_device=i,

process_group=mpu.get_data_parallel_group())
for model_module in model]

复制代码
<span class="hljs-keyword">elif</span> args.DDP_impl == <span class="hljs-string">'local'</span>:
    model = [LocalDDP(model_module,
                      args.accumulate_allreduce_grads_in_fp32,
                      args.use_contiguous_buffers_in_local_ddp)
             <span class="hljs-keyword">for</span> model_module <span class="hljs-keyword">in</span> model]

<span class="hljs-keyword">else</span>:
    <span class="hljs-keyword">raise</span> NotImplementedError(<span class="hljs-string">'Unknown DDP implementation specified: '</span>
                              <span class="hljs-string">'{}. Exiting.'</span>.<span class="hljs-built_in">format</span>(args.DDP_impl))

所以我们看看 megatron 自己的 DDP实现。

5.2.1 定义

定义只有注释可以看看,使用连续的(contiguous)内存来存储和累积梯度,每一种类型的张量属于一个统一的内存,可以统一做 allreduce。

python 复制代码
class DistributedDataParallel(DistributedDataParallelBase):
    """DDP with contiguous buffers options to storre and accumulate gradients.
    This class:
        - has the potential to reduce memory fragmentation.
        - provides the option to do the gradient accumulation
          in a type other than the params type (for example fp32)
``Arguments:
    module: input model.
    accumulate_allreduce_grads_in_fp32: if true do the gradient accumulation
        and the gradient all-reduce all in in float32. If this option is
        true, we require `use_contiguous_buffers` to be true too.
    use_contiguous_buffers: if true, use a contiguous buffer to store the
        gradients.
"""</span>
``
5.2.2 初始化

初始化方法的目的是把同类型梯度连续存储。

python 复制代码
def __init__(self, module,
             accumulate_allreduce_grads_in_fp32,
             use_contiguous_buffers):
`<span class="hljs-built_in">super</span>(DistributedDataParallel, self).__init__(module)

self.accumulate_allreduce_grads_in_fp32 \
    = accumulate_allreduce_grads_in_fp32
self.use_contiguous_buffers = use_contiguous_buffers
<span class="hljs-comment"># If we are using fp32-accumulate-allreduce explicitly</span>
<span class="hljs-comment"># this means we need main grads in a continous buffer.</span>
<span class="hljs-keyword">if</span> self.accumulate_allreduce_grads_in_fp32:
    <span class="hljs-keyword">assert</span> self.use_contiguous_buffers

<span class="hljs-comment"># ===================================</span>
<span class="hljs-comment"># Rest of this part applies only to</span>
<span class="hljs-comment"># the case we use continuous buffers.</span>
<span class="hljs-comment"># ===================================</span>
self._grad_buffers = <span class="hljs-literal">None</span>
<span class="hljs-keyword">if</span> self.use_contiguous_buffers: <span class="hljs-comment"># 这里只考虑连续内存</span>
    self._grad_buffers = {} <span class="hljs-comment"># 定义buffer</span>

    <span class="hljs-comment"># Simple function to define buffer type.</span>
    <span class="hljs-keyword">def</span> <span class="hljs-title function_">_get_buffer_type</span>(<span class="hljs-params">param</span>): <span class="hljs-comment"># 返回buffer类型</span>
        <span class="hljs-keyword">return</span> torch.<span class="hljs-built_in">float</span> <span class="hljs-keyword">if</span> \
            self.accumulate_allreduce_grads_in_fp32 <span class="hljs-keyword">else</span> param.dtype

    <span class="hljs-comment"># First calculate total number of elements per type.</span>
    type_num_elements = {}
    <span class="hljs-keyword">for</span> param <span class="hljs-keyword">in</span> self.module.parameters(): <span class="hljs-comment"># 遍历模型参数</span>
        <span class="hljs-keyword">if</span> param.requires_grad: <span class="hljs-comment"># 如果需要计算梯度</span>
            dtype = _get_buffer_type(param) <span class="hljs-comment"># 获取参数类型</span>
            type_num_elements[dtype] = type_num_elements.get(dtype, <span class="hljs-number">0</span>) \
                                       + param.data.nelement() <span class="hljs-comment"># 该类型参数数目做相应增加</span>

    <span class="hljs-comment"># 目前 type_num_elements 是各种类型参数的个数          </span>
    <span class="hljs-comment"># Allocate the buffer.</span>
    <span class="hljs-keyword">for</span> dtype, num_elements <span class="hljs-keyword">in</span> type_num_elements.items(): <span class="hljs-comment"># 遍历各种类型</span>
        self._grad_buffers[dtype] = MemoryBuffer(num_elements, dtype) <span class="hljs-comment"># 分配内存</span>

    <span class="hljs-comment"># 这里是假定反向传播是参数的反方向,存储每个参数梯度的起始位置    </span>
    <span class="hljs-comment"># Assume the back prop order is reverse the params order, </span>
    <span class="hljs-comment"># store the start index for the gradients.</span>
    <span class="hljs-keyword">for</span> param <span class="hljs-keyword">in</span> self.module.parameters(): <span class="hljs-comment"># 遍历模型参数</span>
        <span class="hljs-keyword">if</span> param.requires_grad: <span class="hljs-comment"># 如果需要计算梯度</span>
            dtype = _get_buffer_type(param) <span class="hljs-comment"># 获取参数类型</span>
            type_num_elements[dtype] -= param.data.nelement() <span class="hljs-comment"># 减少size</span>
            <span class="hljs-comment"># 确定该参数在MemoryBuffer的位置</span>
            param.main_grad = self._grad_buffers[dtype].get( <span class="hljs-comment"># 获取该参数对应的内存</span>
                param.data.shape, type_num_elements[dtype])

    <span class="hljs-comment"># Backward hook.</span>
    <span class="hljs-comment"># Accumalation function for the gradients. We need</span>
    <span class="hljs-comment"># to store them so they don't go out of scope.</span>
    self.grad_accs = []
    <span class="hljs-comment"># Loop over all the parameters in the model.</span>
    <span class="hljs-keyword">for</span> param <span class="hljs-keyword">in</span> self.module.parameters(): <span class="hljs-comment"># 遍历模型参数</span>
        <span class="hljs-keyword">if</span> param.requires_grad: <span class="hljs-comment"># 如果需要计算梯度</span>
            <span class="hljs-comment"># Expand so we get access to grad_fn.</span>
            param_tmp = param.expand_as(param)
            <span class="hljs-comment"># Get the gradient accumulator functtion.</span>
            grad_acc = param_tmp.grad_fn.next_functions[<span class="hljs-number">0</span>][<span class="hljs-number">0</span>] <span class="hljs-comment"># 得到参数对应的梯度函数</span>
            grad_acc.register_hook(self._make_param_hook(param)) <span class="hljs-comment"># 注册了hook</span>
            self.grad_accs.append(grad_acc) <span class="hljs-comment"># 统一管理梯度函数,其实就是book keeping作用</span>
`
5.2.3 内存

MemoryBuffer 是内存抽象。

python 复制代码
class MemoryBuffer:
``<span class="hljs-keyword">def</span> <span class="hljs-title function_">__init__</span>(<span class="hljs-params">self, numel, dtype</span>):
    self.numel = numel
    self.dtype = dtype
    self.data = torch.zeros(self.numel, <span class="hljs-comment"># 初始化内存</span>
                            dtype=self.dtype,
                            device=torch.cuda.current_device(),
                            requires_grad=<span class="hljs-literal">False</span>)


<span class="hljs-keyword">def</span> <span class="hljs-title function_">zero</span>(<span class="hljs-params">self</span>):
    <span class="hljs-string">"""Reset the buffer to zero."""</span>
    self.data.zero_()


<span class="hljs-keyword">def</span> <span class="hljs-title function_">get</span>(<span class="hljs-params">self, shape, start_index</span>):
    <span class="hljs-string">"""Return a tensor with the input `shape` as a view into the
    1-D data starting at `start_index`."""</span>
    end_index = start_index + shape.numel() <span class="hljs-comment"># 定位到该张量在内存buffer之中的位置</span>
    <span class="hljs-keyword">assert</span> end_index &lt;= self.numel, \
        <span class="hljs-string">'requested tensor is out of the buffer range.'</span>
    buffer_tensor = self.data[start_index:end_index] <span class="hljs-comment"># 拿到内存</span>
    buffer_tensor = buffer_tensor.view(shape)
    <span class="hljs-keyword">return</span> buffer_tensor <span class="hljs-comment"># </span>
``
5.2.4 支撑函数

下面是两个支撑函数,分别是用于拷贝梯度和将buffer清零。

python 复制代码
def _make_param_hook(self, param):
    """Create the all-reduce hook for backprop."""
    # Hook used for back-prop.
    def param_hook(*unused):
        # Add the gradient to the buffer.
        if param.grad.data is not None:
            param.main_grad.add_(param.grad.data) # 把梯度拷贝到连续内存之中
            # Now we can deallocate grad memory.
            param.grad = None
    return param_hook

def zero_grad_buffer(self):
"""Set the grad buffer data to zero. Needs to be called at the
begining of each iteration."""
assert self._grad_buffers is not None, 'buffers are not initialized.'
for , buffer in self.grad_buffers.items():
buffer
.zero()

我们假定模型有6个参数,3个 fp32,3 个 fp16,所以被组合成两个连续内存 MemoryBuffer。

5.2.5 梯度规约

allreduce_gradients 是 DDP 对外提供的 API,在后面 train step 之中会调用到。

python 复制代码
def allreduce_gradients(self):
    """Reduce gradients across data parallel ranks."""
    # If we have buffers, simply reduce the data in the buffer.
    if self._grad_buffers is not None:
        # 连续内存
        for _, buffer_ in self._grad_buffers.items():  # 遍历各种类型的buffer
            buffer_.data /= mpu.get_data_parallel_world_size()
            torch.distributed.all_reduce( # 统一归并
                buffer_.data, group=mpu.get_data_parallel_group())
    else:
        # Otherwise, bucketize and all-reduce
        buckets = {} # 否则还是用桶来归并
        # Pack the buckets.
        for param in self.module.parameters(): # 遍历梯度
            if param.requires_grad and param.grad is not None:
                tp = param.data.type()
                if tp not in buckets:
                    buckets[tp] = []
                buckets[tp].append(param) # 同类型的梯度放到对应类型的桶之中
                param.main_grad = param.grad
`    <span class="hljs-comment"># For each bucket, all-reduce and copy all-reduced grads.</span>
    <span class="hljs-keyword">for</span> tp <span class="hljs-keyword">in</span> buckets:
        bucket = buckets[tp]
        grads = [param.grad.data <span class="hljs-keyword">for</span> param <span class="hljs-keyword">in</span> bucket] <span class="hljs-comment"># 把桶里的梯度拿出来</span>
        coalesced = _flatten_dense_tensors(grads) <span class="hljs-comment"># 打平梯度</span>
        coalesced /= mpu.get_data_parallel_world_size()
        torch.distributed.all_reduce( <span class="hljs-comment"># 归并</span>
            coalesced, group=mpu.get_data_parallel_group())
        <span class="hljs-keyword">for</span> buf, synced <span class="hljs-keyword">in</span> <span class="hljs-built_in">zip</span>(grads, _unflatten_dense_tensors(
                coalesced, grads)):
            buf.copy_(synced)
`

运行时候,分别对两种类型的连续内存做 AllReduce。

0x06 训练

Pretrain 之中会调用 train 来进行训练。

python 复制代码
if args.do_train and args.train_iters > 0:
    iteration = train(forward_step_func,
                      model, optimizer, lr_scheduler,
                      train_data_iterator, valid_data_iterator)

6.1 训练主体

train 是常规的套路,大家基本上按照名字就可以理解。

python 复制代码
def train(forward_step_func, model, optimizer, lr_scheduler,
          train_data_iterator, valid_data_iterator):
    """Train the model function."""
    args = get_args()
    timers = get_timers()
`<span class="hljs-comment"># Write args to tensorboard</span>
write_args_to_tensorboard()

<span class="hljs-comment"># Turn on training mode which enables dropout.</span>
<span class="hljs-keyword">for</span> model_module <span class="hljs-keyword">in</span> model:
    model_module.train() <span class="hljs-comment"># </span>

<span class="hljs-comment"># Tracking loss.</span>
total_loss_dict = {}

<span class="hljs-comment"># Iterations.</span>
iteration = args.iteration

report_memory_flag = <span class="hljs-literal">True</span>
<span class="hljs-keyword">while</span> iteration &lt; args.train_iters:
    update_num_microbatches(args.consumed_train_samples)
    loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
        train_step(forward_step_func, <span class="hljs-comment"># 训练</span>
                   train_data_iterator,
                   model,
                   optimizer,
                   lr_scheduler)
    iteration += <span class="hljs-number">1</span>
    args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
                                   args.micro_batch_size * \
                                   get_num_microbatches()

    <span class="hljs-comment"># Logging.</span>
    loss_scale = optimizer.get_loss_scale().item()
    params_norm = <span class="hljs-literal">None</span>
    <span class="hljs-keyword">if</span> args.log_params_norm:
        params_norm = calc_params_l2_norm(model)
    report_memory_flag = training_log(loss_dict, total_loss_dict,
                                      optimizer.param_groups[<span class="hljs-number">0</span>][<span class="hljs-string">'lr'</span>],
                                      iteration, loss_scale,
                                      report_memory_flag, skipped_iter,
                                      grad_norm, params_norm, num_zeros_in_grad)

    <span class="hljs-comment"># Autoresume</span>
    <span class="hljs-keyword">if</span> args.adlr_autoresume <span class="hljs-keyword">and</span> \
       (iteration % args.adlr_autoresume_interval == <span class="hljs-number">0</span>):
        check_adlr_autoresume_termination(iteration, model, optimizer,
                                          lr_scheduler)

    <span class="hljs-comment"># Evaluation</span>
    <span class="hljs-keyword">if</span> args.eval_interval <span class="hljs-keyword">and</span> iteration % args.eval_interval == <span class="hljs-number">0</span> <span class="hljs-keyword">and</span> \
       args.do_valid:
        prefix = <span class="hljs-string">'iteration {}'</span>.<span class="hljs-built_in">format</span>(iteration)
        evaluate_and_print_results(prefix, forward_step_func,
                                   valid_data_iterator, model,
                                   iteration, <span class="hljs-literal">False</span>)

    <span class="hljs-comment"># Checkpointing</span>
    saved_checkpoint = <span class="hljs-literal">False</span>
    <span class="hljs-keyword">if</span> args.exit_signal_handler:
        signal_handler = get_signal_handler()
        <span class="hljs-keyword">if</span> <span class="hljs-built_in">any</span>(signal_handler.signals_received()):
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            sys.exit()

    <span class="hljs-keyword">if</span> args.save <span class="hljs-keyword">and</span> args.save_interval <span class="hljs-keyword">and</span> \
       iteration % args.save_interval == <span class="hljs-number">0</span>:
        save_checkpoint_and_time(iteration, model, optimizer,
                                 lr_scheduler)
        saved_checkpoint = <span class="hljs-literal">True</span>

    <span class="hljs-comment"># Exiting based on duration</span>
    <span class="hljs-keyword">if</span> args.exit_duration_in_mins:
        train_time = (time.time() - _TRAIN_START_TIME) / <span class="hljs-number">60.0</span>
        done_cuda = torch.cuda.IntTensor(
            [train_time &gt; args.exit_duration_in_mins])
        torch.distributed.all_reduce(
            done_cuda, op=torch.distributed.ReduceOp.MAX)
        done = done_cuda.item()
        <span class="hljs-keyword">if</span> done:
            <span class="hljs-keyword">if</span> <span class="hljs-keyword">not</span> saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
            sys.exit()

    <span class="hljs-comment"># Exiting based on iterations</span>
    <span class="hljs-keyword">if</span> args.exit_interval <span class="hljs-keyword">and</span> iteration % args.exit_interval == <span class="hljs-number">0</span>:
        <span class="hljs-keyword">if</span> <span class="hljs-keyword">not</span> saved_checkpoint:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
        torch.distributed.barrier()
        sys.exit()

<span class="hljs-keyword">return</span> iteration
`

6.2 训练step

train_step 会获取 get_forward_backward_func 得到 schedule,因为是流水线并行,所以需要 schedule 如何具体训练。

python 复制代码
def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()
`<span class="hljs-comment"># Set grad to zero.</span>
<span class="hljs-keyword">if</span> args.DDP_impl == <span class="hljs-string">'local'</span> <span class="hljs-keyword">and</span> args.use_contiguous_buffers_in_local_ddp:
    <span class="hljs-keyword">for</span> partition <span class="hljs-keyword">in</span> model:
        partition.zero_grad_buffer()
optimizer.zero_grad()

<span class="hljs-comment"># 获取训练schedule</span>
forward_backward_func = get_forward_backward_func()
losses_reduced = forward_backward_func( <span class="hljs-comment"># 进行训练</span>
    forward_step_func, data_iterator, model,
    optimizer, timers, forward_only=<span class="hljs-literal">False</span>)

<span class="hljs-comment"># Empty unused memory</span>
<span class="hljs-keyword">if</span> args.empty_unused_memory_level &gt;= <span class="hljs-number">1</span>:
    torch.cuda.empty_cache()

<span class="hljs-comment"># All-reduce if needed.</span>
<span class="hljs-keyword">if</span> args.DDP_impl == <span class="hljs-string">'local'</span>:
    <span class="hljs-keyword">for</span> model_module <span class="hljs-keyword">in</span> model:
        model_module.allreduce_gradients()

<span class="hljs-comment"># All-reduce word_embeddings' grad across first and last stages to ensure</span>
<span class="hljs-comment"># that word_embeddings parameters stay in sync.</span>
<span class="hljs-comment"># This should only run for models that support pipelined model parallelism</span>
<span class="hljs-comment"># (BERT and GPT-2).</span>
<span class="hljs-keyword">if</span> mpu.is_rank_in_embedding_group(ignore_virtual=<span class="hljs-literal">True</span>) <span class="hljs-keyword">and</span> \
        mpu.get_pipeline_model_parallel_world_size() &gt; <span class="hljs-number">1</span>:
    <span class="hljs-keyword">if</span> mpu.is_pipeline_first_stage(ignore_virtual=<span class="hljs-literal">True</span>):
        unwrapped_model = model[<span class="hljs-number">0</span>]
    <span class="hljs-keyword">elif</span> mpu.is_pipeline_last_stage(ignore_virtual=<span class="hljs-literal">True</span>):
        unwrapped_model = model[-<span class="hljs-number">1</span>]
    <span class="hljs-keyword">else</span>:  <span class="hljs-comment"># We do not support the interleaved schedule for T5 yet.</span>
        unwrapped_model = model[<span class="hljs-number">0</span>]
    unwrapped_model = unwrap_model(
        unwrapped_model, (torchDDP, LocalDDP, Float16Module))

    <span class="hljs-keyword">if</span> unwrapped_model.share_word_embeddings:
        word_embeddings_weight = unwrapped_model.word_embeddings_weight()
        <span class="hljs-keyword">if</span> args.DDP_impl == <span class="hljs-string">'local'</span>:
            grad = word_embeddings_weight.main_grad
        <span class="hljs-keyword">else</span>:
            grad = word_embeddings_weight.grad
        torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())

<span class="hljs-comment"># Update parameters.</span>
update_successful, grad_norm, num_zeros_in_grad = optimizer.step()

<span class="hljs-comment"># Update learning rate.</span>
<span class="hljs-keyword">if</span> update_successful:
    increment = get_num_microbatches() * \
                args.micro_batch_size * \
                args.data_parallel_size
    lr_scheduler.step(increment=increment)
    skipped_iter = <span class="hljs-number">0</span>
<span class="hljs-keyword">else</span>:
    skipped_iter = <span class="hljs-number">1</span>

<span class="hljs-comment"># Empty unused memory</span>
<span class="hljs-keyword">if</span> args.empty_unused_memory_level &gt;= <span class="hljs-number">2</span>:
    torch.cuda.empty_cache()

<span class="hljs-keyword">if</span> mpu.is_pipeline_last_stage(ignore_virtual=<span class="hljs-literal">True</span>):
    <span class="hljs-comment"># Average loss across microbatches.</span>
    loss_reduced = {}
    <span class="hljs-keyword">for</span> key <span class="hljs-keyword">in</span> losses_reduced[<span class="hljs-number">0</span>]:
        losses_reduced_for_key = [x[key] <span class="hljs-keyword">for</span> x <span class="hljs-keyword">in</span> losses_reduced]
        loss_reduced[key] = <span class="hljs-built_in">sum</span>(losses_reduced_for_key) / <span class="hljs-built_in">len</span>(losses_reduced_for_key)
    <span class="hljs-keyword">return</span> loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
<span class="hljs-keyword">return</span> {}, skipped_iter, grad_norm, num_zeros_in_grad
`

6.3 获取schedule

get_forward_backward_func 获取 pipeline 的schedule,这里分为 flush 和 interleaving 两种,我们后续会分析这两种schedule。

python 复制代码
def get_forward_backward_func():
    args = get_args()
    if mpu.get_pipeline_model_parallel_world_size() > 1:
        if args.virtual_pipeline_model_parallel_size is not None:
            forward_backward_func = forward_backward_pipelining_with_interleaving
        else:
            forward_backward_func = forward_backward_pipelining_without_interleaving
    else:
        forward_backward_func = forward_backward_no_pipelining
    return forward_backward_func

训练逻辑大体拓展为:

至此,Megatron 基本架构分析完毕,下一篇我们介绍模型并行设置。

0xFF 参考

[细读经典]Megatron论文和代码详细分析(2)

[细读经典]Megatron论文和代码详细分析(1)

Megatron-LM源码阅读(一)

Megatron-LM源码阅读(二)

megatron学习总结

GTC 2020: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism

www.DeepL.com/Translator

https://developer.nvidia.com/gtc/2020/slides/s21496-megatron-lm-training-multi-billion-parameter-language-models-using-model-parallelism.pdf

NVIDIA解决方案架构师深度解析大规模参数语言模型Megatron-BERT

相关推荐
乱世刀疤13 分钟前
商业 |阿里云又丢出了核弹
人工智能·大模型
国科安芯23 分钟前
自研MCU芯片闪存驱动的实现:OpenOCD详细过程记录与操作指南
单片机·嵌入式硬件·架构
lix的小鱼1 小时前
Spark集群搭建之Yarn模式
大数据·分布式·spark
一刀到底2112 小时前
java 多核,多线程,分布式 并发编程的现状 :从本身的jdk ,到 spring ,到其它第三方。
java·分布式·高并发
hnlucky2 小时前
《Zabbix Proxy分布式监控实战:从安装到配置全解析》
数据库·分布式·学习·adb·zabbix·集成学习·proxy模式
it-搬运工3 小时前
Rabbitmq安装
分布式·rabbitmq
Nice__J3 小时前
智芯Z20K144x MCU开发之时钟架构
单片机·嵌入式硬件·架构
信徒_4 小时前
微服务系统设计
微服务·云原生·架构
大数据追光猿4 小时前
【大数据】服务器上部署Apache Paimon
大数据·服务器·docker·架构·apache