人工智能之基于阿里云进行人脸特征检测部署

人工智能之基于阿里云进行人脸特征检测部署

需求描述

  1. 基于阿里云搭建真人人脸68个关键点检测模型,模型名称:Damo_XR_Lab/cv_human_68-facial-landmark-detection
  2. 使用上述模型进行人脸关键点识别,模型地址

业务实现

阿里云配置

阿里云配置如下:

依赖工具安装

bash 复制代码
# 安装ModelScope, 建议git安装
git clone https://github.com/modelscope/modelscope.git
cd modelscope
pip install -e .

SDK模型下载

python 复制代码
# SDK模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('Damo_XR_Lab/cv_human_68-facial-landmark-detection')

图片验证

python 复制代码
import cv2
import copy
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks

model_id = 'Damo_XR_Lab/cv_human_68-facial-landmark-detection'
estimator = pipeline(Tasks.facial_68ldk_detection, model=model_id)

Input_file = '/mnt/workspace/105910221.jpg'
cv_img = cv2.imread(Input_file)
cv_img = cv2.resize(cv_img, (256, 256))

results = estimator(input=cv_img)
landmarks = results['landmarks']

image_draw = copy.copy(cv_img)
for num in range(landmarks.shape[0]):
    cv2.circle(image_draw, (round(landmarks[num][0]), round(landmarks[num][1])), 2, (0, 255, 0), -1)
cv2.imwrite('result.png', image_draw)

结果展示如下:测试数据图片路径

从多次搭建的经验来看,建议在搭建模型相关的内容的时候,优先选择阿里云的相关服务,很多东西阿里云的容器云已经提供底层技术,可以很快的使用modelscope提供的操作内容进行快速的模型搭建。

相关推荐
猫头虎7 分钟前
如何解决 pip install 编译报错 fatal error: hdf5.h: No such file or directory(h5py)问题
人工智能·python·pycharm·开源·beautifulsoup·ai编程·pip
龙赤子8 分钟前
人工智能AI的大框架
人工智能
比奥利奥还傲.11 分钟前
本地+AI+大模型自由用!Cherry+Studio打破局域网限制
人工智能
雪碧聊技术12 分钟前
深度学习、机器学习、人工智能三者的关系
人工智能·深度学习·机器学习
β添砖java13 分钟前
机器学习初级
人工智能·机器学习
陈奕昆19 分钟前
n8n实战营Day3:电商订单全流程自动化·需求分析与流程拆解
大数据·开发语言·人工智能·自动化·需求分析·n8n
努力改掉拖延症的小白20 分钟前
Intel笔记本也能部署大模型(利用Ultra系列gpu通过优化版ollama实现)
人工智能·ai·语言模型·大模型
优爱蛋白21 分钟前
B细胞细胞因子:免疫系统的“信使军团“与疾病治疗的新前沿
人工智能·经验分享·健康医疗
陈奕昆28 分钟前
n8n实战营Day1课时3:高频节点解析+Webhook表单同步Excel实操
人工智能·python·n8n
Eric.Lee202132 分钟前
物理引擎MuJoCo 项目介绍
人工智能·机器人·仿真·robot·物理引擎·mujoco