人工智能之基于阿里云进行人脸特征检测部署

人工智能之基于阿里云进行人脸特征检测部署

需求描述

  1. 基于阿里云搭建真人人脸68个关键点检测模型,模型名称:Damo_XR_Lab/cv_human_68-facial-landmark-detection
  2. 使用上述模型进行人脸关键点识别,模型地址

业务实现

阿里云配置

阿里云配置如下:

依赖工具安装

bash 复制代码
# 安装ModelScope, 建议git安装
git clone https://github.com/modelscope/modelscope.git
cd modelscope
pip install -e .

SDK模型下载

python 复制代码
# SDK模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('Damo_XR_Lab/cv_human_68-facial-landmark-detection')

图片验证

python 复制代码
import cv2
import copy
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks

model_id = 'Damo_XR_Lab/cv_human_68-facial-landmark-detection'
estimator = pipeline(Tasks.facial_68ldk_detection, model=model_id)

Input_file = '/mnt/workspace/105910221.jpg'
cv_img = cv2.imread(Input_file)
cv_img = cv2.resize(cv_img, (256, 256))

results = estimator(input=cv_img)
landmarks = results['landmarks']

image_draw = copy.copy(cv_img)
for num in range(landmarks.shape[0]):
    cv2.circle(image_draw, (round(landmarks[num][0]), round(landmarks[num][1])), 2, (0, 255, 0), -1)
cv2.imwrite('result.png', image_draw)

结果展示如下:测试数据图片路径

从多次搭建的经验来看,建议在搭建模型相关的内容的时候,优先选择阿里云的相关服务,很多东西阿里云的容器云已经提供底层技术,可以很快的使用modelscope提供的操作内容进行快速的模型搭建。

相关推荐
晓枫-迷麟23 分钟前
【文献阅读】当代MOF与机器学习
人工智能·机器学习
来酱何人38 分钟前
实时NLP数据处理:流数据的清洗、特征提取与模型推理适配
人工智能·深度学习·分类·nlp·bert
sensen_kiss40 分钟前
INT301 Bio-computation 生物计算(神经网络)Pt.3 梯度下降与Sigmoid激活函数
人工智能·神经网络·机器学习
Shilong Wang41 分钟前
MLE, MAP, Full Bayes
人工智能·算法·机器学习
数据库知识分享者小北1 小时前
云栖重磅|瑶池数据库:从云原生数据底座向“AI就绪”的多模态数据底座演进
数据库·人工智能·云原生
lingling0091 小时前
机械臂动作捕捉系统选型指南:从需求到方案,NOKOV 度量光学动捕成优选
人工智能·算法
Blossom.1181 小时前
把AI“刻”进玻璃:基于飞秒激光量子缺陷的随机数生成器与边缘安全实战
人工智能·python·单片机·深度学习·神经网络·安全·机器学习
tangchen。1 小时前
YOLOv3 :目标检测的经典融合与创新
人工智能·计算机视觉·目标跟踪
掘金安东尼2 小时前
OCR的新高度?PaddleOCR-VL 与 DeepSeek-OCR 的技术与应用横评
人工智能
Aurora-silas2 小时前
LLM微调尝试——MAC版
人工智能·pytorch·深度学习·macos·机器学习·语言模型·自然语言处理