人工智能之基于阿里云进行人脸特征检测部署

人工智能之基于阿里云进行人脸特征检测部署

需求描述

  1. 基于阿里云搭建真人人脸68个关键点检测模型,模型名称:Damo_XR_Lab/cv_human_68-facial-landmark-detection
  2. 使用上述模型进行人脸关键点识别,模型地址

业务实现

阿里云配置

阿里云配置如下:

依赖工具安装

bash 复制代码
# 安装ModelScope, 建议git安装
git clone https://github.com/modelscope/modelscope.git
cd modelscope
pip install -e .

SDK模型下载

python 复制代码
# SDK模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('Damo_XR_Lab/cv_human_68-facial-landmark-detection')

图片验证

python 复制代码
import cv2
import copy
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks

model_id = 'Damo_XR_Lab/cv_human_68-facial-landmark-detection'
estimator = pipeline(Tasks.facial_68ldk_detection, model=model_id)

Input_file = '/mnt/workspace/105910221.jpg'
cv_img = cv2.imread(Input_file)
cv_img = cv2.resize(cv_img, (256, 256))

results = estimator(input=cv_img)
landmarks = results['landmarks']

image_draw = copy.copy(cv_img)
for num in range(landmarks.shape[0]):
    cv2.circle(image_draw, (round(landmarks[num][0]), round(landmarks[num][1])), 2, (0, 255, 0), -1)
cv2.imwrite('result.png', image_draw)

结果展示如下:测试数据图片路径

从多次搭建的经验来看,建议在搭建模型相关的内容的时候,优先选择阿里云的相关服务,很多东西阿里云的容器云已经提供底层技术,可以很快的使用modelscope提供的操作内容进行快速的模型搭建。

相关推荐
飞哥数智坊7 分钟前
多次尝试用 CodeBuddy 做小程序,最终我放弃了
人工智能·ai编程
后端小肥肠1 小时前
别再眼馋 10w + 治愈漫画!Coze 工作流 3 分钟出成品,小白可学
人工智能·aigc·coze
唐某人丶4 小时前
教你如何用 JS 实现 Agent 系统(2)—— 开发 ReAct 版本的“深度搜索”
前端·人工智能·aigc
FIT2CLOUD飞致云4 小时前
九月月报丨MaxKB在不同规模医疗机构的应用进展汇报
人工智能·开源
阿里云大数据AI技术4 小时前
【新模型速递】PAI-Model Gallery云上一键部署Qwen3-Next系列模型
人工智能
袁庭新4 小时前
全球首位AI机器人部长,背负反腐重任
人工智能·aigc
机器之心5 小时前
谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长
人工智能·openai
算家计算5 小时前
AI配音革命!B站最新开源IndexTTS2本地部署教程:精准对口型,情感随心换
人工智能·开源·aigc
量子位5 小时前
马斯克周末血裁xAI 500人
人工智能·ai编程
算家计算5 小时前
OpenAI最强编程模型GPT-5-Codex发布!可独立编程7小时,编程效率提升10倍
人工智能·ai编程·资讯