伏羲0.13(文生图)

确保伏羲0.12(文生图)注释和GUI显示均为中文,项目文件夹名称为中文,并提供使用说明。此外,我将完善风格迁移的确定及训练函数和代码。以下是完整的Python文件和相关说明。

项目结构

code 复制代码
文本生成多模态项目/
├── config.yaml
├── data/
│   ├── dataset.csv
│   └── input.txt
├── models/
│   ├── model1.pth
│   ├── model2.pth
│   └── model3.pth
├── output/
│   ├── 图像/
│   ├── 视频/
│   └── 音频/
├── main.py
└── README.md

config.yaml

yaml 复制代码
device: 'cuda'
data:
  dataset_path: 'data/dataset.csv'
  input_file: 'data/input.txt'
  output_dir: 'output'
  image_output_dir: 'output/图像'
  video_output_dir: 'output/视频'
  audio_output_dir: 'output/音频'
model:
  text_encoder_model_name: 'bert-base-uncased'
  audio_generator_model_name: 'tacotron2'
  path: 'models/model1.pth'
  path1: 'models/model1.pth'
  path2: 'models/model2.pth'
  path3: 'models/model3.pth'
training:
  learning_rate: 0.0002
  batch_size: 64
  epochs: 100
  log_dir: 'logs'

main.py

python 复制代码
import os
import yaml
import torch
import torch.optim as optim
import torch.nn as nn
import torchvision.transforms as transforms
import pandas as pd
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, AutoModel
import random
import numpy as np
import logging
from tqdm import tqdm
from tensorboardX import SummaryWriter
import threading
import tkinter as tk
from tkinter import filedialog, messagebox
from PIL import Image, ImageTk
from cryptography.fernet import Fernet
import unittest
import matplotlib.pyplot as plt

# 配置文件加载
def load_config(config_path):
    """
    从配置文件中加载配置参数。
    :param config_path: 配置文件的路径
    :return: 配置参数字典
    """
    try:
        with open(config_path, 'r', encoding='utf-8') as file:
            config = yaml.safe_load(file)
        return config
    except FileNotFoundError:
        logging.error(f"配置文件 {config_path} 未找到")
        raise
    except yaml.YAMLError as e:
        logging.error(f"配置文件解析错误: {e}")
        raise

# 数据加载
def load_text_data(file_path):
    """
    从文本文件中加载数据。
    :param file_path: 文本文件的路径
    :return: 文本数据列表
    """
    try:
        with open(file_path, 'r', encoding='utf-8') as file:
            text_data = file.readlines()
        return [line.strip() for line in text_data]
    except FileNotFoundError:
        logging.error(f"文本文件 {file_path} 未找到")
        raise
    except IOError as e:
        logging.error(f"读取文本文件时发生错误: {e}")
        raise

# 数据清洗
def clean_data(data):
    """
    清洗数据,去除空值和重复值。
    :param data: DataFrame 数据
    :return: 清洗后的 DataFrame 数据
    """
    return data.dropna().drop_duplicates()

# 文本预处理
def preprocess_text(text, tokenizer):
    """
    对文本进行预处理,转换为模型输入格式。
    :param text: 输入文本
    :param tokenizer: 分词器
    :return: 预处理后的文本张量
    """
    return tokenizer(text, return_tensors='pt', padding=True, truncation=True)

# 数据增强
def augment_data(image, mode, style_image=None):
    """
    对图像进行数据增强。
    :param image: 输入图像
    :param mode: 增强模式('train' 或 'test')
    :param style_image: 风格图像
    :return: 增强后的图像
    """
    if mode == 'train':
        transform = transforms.Compose([
            transforms.RandomHorizontalFlip(),
            transforms.RandomRotation(10),
            transforms.RandomResizedCrop(64, scale=(0.8, 1.0)),
            transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
    else:
        transform = transforms.Compose([
            transforms.Resize((64, 64)),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
    
    image = transform(image)
    if style_image is not None:
        image = style_transfer(image, style_image)
    image = color_jitter(image)
    return image

# 风格迁移
def style_transfer(image, style_image):
    """
    风格迁移。
    :param image: 输入图像
    :param style_image: 风格图像
    :return: 迁移后的图像
    """
    # 假设有一个预训练的风格迁移模型
    style_model = StyleTransferModel()
    return style_model(image, style_image)

# 颜色抖动
def color_jitter(image):
    """
    颜色抖动。
    :param image: 输入图像
    :return: 颜色抖动后的图像
    """
    return transforms.functional.adjust_brightness(transforms.functional.adjust_contrast(transforms.functional.adjust_saturation(image, 1.2), 1.2), 1.2)

# 文本编码器
class TextEncoder(nn.Module):
    """
    文本编码器,使用预训练的BERT模型。
    """
    def __init__(self, model_name):
        super(TextEncoder, self).__init__()
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModel.from_pretrained(model_name)

    def forward(self, text):
        """
        前向传播,将文本编码为特征向量。
        :param text: 输入文本
        :return: 编码后的特征向量
        """
        inputs = self.tokenizer(text, return_tensors='pt', padding=True, truncation=True)
        outputs = self.model(**inputs)
        return outputs.last_hidden_state.mean(dim=1)

# 图像生成器
class ImageGenerator(nn.Module):
    """
    图像生成器,使用卷积转置层生成图像。
    """
    def __init__(self, in_channels):
        super(ImageGenerator, self).__init__()
        self.decoder = nn.Sequential(
            nn.ConvTranspose2d(in_channels, 512, kernel_size=4, stride=1, padding=0),
            nn.BatchNorm2d(512),
            nn.ReLU(True),
            nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(True),
            nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(True),
            nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(True),
            nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1),
            nn.Tanh()
        )

    def forward(self, x):
        """
        前向传播,生成图像。
        :param x: 输入特征向量
        :return: 生成的图像
        """
        x = x.view(-1, x.size(1), 1, 1)
        return self.decoder(x)

# 视频生成器
class VideoGenerator(nn.Module):
    def __init__(self, in_channels):
        super(VideoGenerator, self).__init__()
        self.decoder = nn.Sequential(
            nn.ConvTranspose3d(in_channels, 512, kernel_size=(4, 4, 4), stride=(1, 1, 1), padding=(0, 0, 0)),
            nn.BatchNorm3d(512),
            nn.ReLU(True),
            nn.ConvTranspose3d(512, 256, kernel_size=(4, 4, 4), stride=(2, 2, 2), padding=(1, 1, 1)),
            nn.BatchNorm3d(256),
            nn.ReLU(True),
            nn.ConvTranspose3d(256, 128, kernel_size=(4, 4, 4), stride=(2, 2, 2), padding=(1, 1, 1)),
            nn.BatchNorm3d(128),
            nn.ReLU(True),
            nn.ConvTranspose3d(128, 64, kernel_size=(4, 4, 4), stride=(2, 2, 2), padding=(1, 1, 1)),
            nn.BatchNorm3d(64),
            nn.ReLU(True),
            nn.ConvTranspose3d(64, 3, kernel_size=(4, 4, 4), stride=(2, 2, 2), padding=(1, 1, 1)),
            nn.Tanh()
        )

    def forward(self, x):
        x = x.view(-1, x.size(1), 1, 1, 1)
        return self.decoder(x)

# 音频生成器
class AudioGenerator(nn.Module):
    def __init__(self, model_name):
        super(AudioGenerator, self).__init__()
        self.model = Tacotron2.from_pretrained(model_name)

    def forward(self, text):
        return self.model(text)

# 判别器
class Discriminator(nn.Module):
    """
    判别器,用于判别生成的图像是真实的还是伪造的。
    """
    def __init__(self):
        super(Discriminator, self).__init__()
        self.main = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(128),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0),
            nn.Sigmoid()
        )

    def forward(self, x):
        """
        前向传播,输出判别结果。
        :param x: 输入图像
        :return: 判别结果
        """
        return self.main(x)

# 模型定义
class TextToMultimodalModel(nn.Module):
    """
    文本到多模态生成模型。
    """
    def __init__(self, text_encoder_model_name, audio_generator_model_name):
        super(TextToMultimodalModel, self).__init__()
        self.text_encoder = TextEncoder(text_encoder_model_name)
        self.image_generator = ImageGenerator(768)
        self.video_generator = VideoGenerator(768)
        self.audio_generator = AudioGenerator(audio_generator_model_name)

    def forward(self, text):
        """
        前向传播,将文本转换为图像、视频和音频。
        :param text: 输入文本
        :return: 生成的图像、视频和音频
        """
        text_features = self.text_encoder(text)
        image = self.image_generator(text_features)
        video = self.video_generator(text_features)
        audio = self.audio_generator(text)
        return image, video, audio

# 模型加载
def load_model(model_path, text_encoder_model_name, audio_generator_model_name):
    """
    加载预训练的模型。
    :param model_path: 模型文件的路径
    :param text_encoder_model_name: 文本编码器模型名称
    :param audio_generator_model_name: 音频生成器模型名称
    :return: 加载的模型
    """
    model = TextToMultimodalModel(text_encoder_model_name, audio_generator_model_name)
    if os.path.exists(model_path):
        model.load_state_dict(torch.load(model_path))
    else:
        logging.warning(f"模型文件 {model_path} 未找到,使用随机初始化的模型")
    model.eval()
    return model

# 图像保存
def save_image(image, path, key=None):
    """
    保存生成的图像。
    :param image: 生成的图像
    :param path: 保存路径
    :param key: 加密密钥
    """
    if not os.path.exists(os.path.dirname(path)):
        os.makedirs(os.path.dirname(path))
    if key:
        encrypted_image = encrypt_data(image, key)
        with open(path, 'wb') as f:
            f.write(encrypted_image)
    else:
        image.save(path)

# 视频保存
def save_video(video, path, key=None):
    """
    保存生成的视频。
    :param video: 生成的视频
    :param path: 保存路径
    :param key: 加密密钥
    """
    if not os.path.exists(os.path.dirname(path)):
        os.makedirs(os.path.dirname(path))
    if key:
        encrypted_video = encrypt_data(video, key)
        with open(path, 'wb') as f:
            f.write(encrypted_video)
    else:
        # 假设 video 是一个 numpy 数组
        import cv2
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(path, fourcc, 20.0, (64, 64))
        for frame in video:
            frame = (frame * 127.5 + 127.5).astype('uint8')
            out.write(frame)
        out.release()

# 音频保存
def save_audio(audio, path, key=None):
    """
    保存生成的音频。
    :param audio: 生成的音频
    :param path: 保存路径
    :param key: 加密密钥
    """
    if not os.path.exists(os.path.dirname(path)):
        os.makedirs(os.path.dirname(path))
    if key:
        encrypted_audio = encrypt_data(audio, key)
        with open(path, 'wb') as f:
            f.write(encrypted_audio)
    else:
        # 假设 audio 是一个 numpy 数组
        from scipy.io.wavfile import write
        write(path, 22050, audio)

# 数据集类
class TextToImageDataset(Dataset):
    """
    文本到图像数据集类。
    """
    def __init__(self, csv_file, transform=None, mode='train'):
        self.data = pd.read_csv(csv_file)
        self.data = clean_data(self.data)
        self.transform = transform
        self.mode = mode
        self.tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        text = self.data.iloc[idx]['text']
        image_path = self.data.iloc[idx]['image_path']
        image = Image.open(image_path).convert('RGB')
        if self.transform:
            image = self.transform(image, self.mode)
        text_inputs = preprocess_text([text], self.tokenizer)
        return text_inputs, image

# 模型训练
def train_model(config):
    """
    训练文本到多模态生成模型。
    :param config: 配置参数
    """
    transform = transforms.Compose([
        transforms.Resize((64, 64)),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    dataset = TextToImageDataset(config['data']['dataset_path'], transform=augment_data, mode='train')
    dataloader = DataLoader(dataset, batch_size=config['training']['batch_size'], shuffle=True)

    device = torch.device(config['device'])

    model = TextToMultimodalModel(config['model']['text_encoder_model_name'], config['model']['audio_generator_model_name']).to(device)
    discriminator = Discriminator().to(device)

    optimizer_g = optim.Adam(model.parameters(), lr=config['training']['learning_rate'])
    optimizer_d = optim.Adam(discriminator.parameters(), lr=config['training']['learning_rate'])

    criterion_gan = nn.BCELoss()
    criterion_l1 = nn.L1Loss()
    criterion_mse = nn.MSELoss()

    scheduler_g = optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, 'min', patience=5)
    scheduler_d = optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, 'min', patience=5)

    writer = SummaryWriter(log_dir=config['training']['log_dir'])

    best_loss = float('inf')
    patience = 0
    max_patience = 10
    scaler = GradScaler()

    for epoch in range(config['training']['epochs']):
        model.train()
        discriminator.train()
        running_loss_g = 0.0
        running_loss_d = 0.0

        pbar = tqdm(dataloader, desc=f"Epoch {epoch + 1}")
        for i, (text_inputs, images) in enumerate(pbar):
            images = images.to(device)
            real_labels = torch.ones(images.size(0), 1).to(device)
            fake_labels = torch.zeros(images.size(0), 1).to(device)

            # 训练判别器
            optimizer_d.zero_grad()
            with autocast():
                real_outputs = discriminator(images)
                d_loss_real = criterion_gan(real_outputs, real_labels)

                generated_images, _, _ = model(text_inputs['input_ids'].to(device), text_inputs['attention_mask'].to(device))
                fake_outputs = discriminator(generated_images.detach())
                d_loss_fake = criterion_gan(fake_outputs, fake_labels)

                d_loss = (d_loss_real + d_loss_fake) / 2

            scaler.scale(d_loss).backward()
            scaler.step(optimizer_d)
            scaler.update()

            # 训练生成器
            optimizer_g.zero_grad()
            with autocast():
                generated_images, generated_videos, generated_audios = model(text_inputs['input_ids'].to(device), text_inputs['attention_mask'].to(device))
                g_outputs = discriminator(generated_images)
                g_loss_gan = criterion_gan(g_outputs, real_labels)
                g_loss_l1 = criterion_l1(generated_images, images)
                g_loss_mse = criterion_mse(generated_videos, videos) + criterion_mse(generated_audios, audios)
                g_loss = g_loss_gan + 100 * g_loss_l1 + 100 * g_loss_mse

            scaler.scale(g_loss).backward()
            scaler.step(optimizer_g)
            scaler.update()

            running_loss_g += g_loss.item()
            running_loss_d += d_loss.item()

            pbar.set_postfix({'G Loss': g_loss.item(), 'D Loss': d_loss.item()})

        avg_loss_g = running_loss_g / len(dataloader)
        avg_loss_d = running_loss_d / len(dataloader)

        writer.add_scalar('Generator Loss', avg_loss_g, epoch)
        writer.add_scalar('Discriminator Loss', avg_loss_d, epoch)
        writer.add_scalar('Learning Rate (G)', optimizer_g.param_groups[0]['lr'], epoch)
        writer.add_scalar('Learning Rate (D)', optimizer_d.param_groups[0]['lr'], epoch)

        scheduler_g.step(avg_loss_g)
        scheduler_d.step(avg_loss_d)

        if avg_loss_g < best_loss:
            best_loss = avg_loss_g
            torch.save(model.state_dict(), config['model']['path'])
            patience = 0
        else:
            patience += 1
            if patience >= max_patience:
                logging.info(f"提前停止于第 {epoch + 1} 轮")
                break

        logging.info(f"Epoch {epoch + 1}, Generator Loss: {avg_loss_g}, Discriminator Loss: {avg_loss_d}")

    writer.close()

# 图像生成
def generate_images_batch(model, text_data, output_dir, key=None):
    """
    生成图像。
    :param model: 模型
    :param text_data: 输入文本数据
    :param output_dir: 输出目录
    :param key: 加密密钥
    """
    model.eval()
    with torch.no_grad():
        for text in text_data:
            input_tensor = preprocess_text([text], model.text_encoder.tokenizer)
            input_tensor = {k: v.to(device) for k, v in input_tensor.items()}
            image, video, audio = model(input_tensor['input_ids'], input_tensor['attention_mask'])
            image = image.squeeze(0).detach().cpu().numpy()
            image = (image * 127.5 + 127.5).astype('uint8')
            image = Image.fromarray(image.transpose(1, 2, 0))

            # 保存图像
            save_image(image, f"{output_dir}/{text}.png", key)

            # 保存视频
            video = video.squeeze(0).detach().cpu().numpy()
            video = (video * 127.5 + 127.5).astype('uint8')
            save_video(video, f"{output_dir}/{text}.mp4", key)

            # 保存音频
            audio = audio.squeeze(0).detach().cpu().numpy()
            save_audio(audio, f"{output_dir}/{text}.wav", key)

# 图形用户界面
class TextToImageGUI:
    """
    文本到多模态生成的图形用户界面。
    """
    def __init__(self, root):
        self.root = root
        self.root.title("文本生成多模态")
        self.config = load_config('config.yaml')
        self.device = torch.device(self.config['device'])

        self.models = {
            '模型1': load_model(self.config['model']['path1'], self.config['model']['text_encoder_model_name1'], self.config['model']['audio_generator_model_name1']),
            '模型2': load_model(self.config['model']['path2'], self.config['model']['text_encoder_model_name2'], self.config['model']['audio_generator_model_name2']),
            '模型3': load_model(self.config['model']['path3'], self.config['model']['text_encoder_model_name3'], self.config['model']['audio_generator_model_name3'])
        }

        self.selected_model = tk.StringVar(value='模型1')
        self.model_menu = tk.OptionMenu(root, self.selected_model, *self.models.keys(), command=self.change_model)
        self.model_menu.pack(pady=10)

        self.text_input = tk.Text(root, height=10, width=50)
        self.text_input.pack(pady=10)

        self.train_button = tk.Button(root, text="训练模型", command=self.train_model)
        self.train_button.pack(pady=10)

        self.epochs_label = tk.Label(root, text="训练轮次:")
        self.epochs_label.pack(pady=5)
        self.epochs_entry = tk.Entry(root)
        self.epochs_entry.insert(0, str(self.config['training']['epochs']))
        self.epochs_entry.pack(pady=5)

        self.generate_button = tk.Button(root, text="生成多模态数据", command=self.generate_multimodal)
        self.generate_button.pack(pady=10)

        self.image_label = tk.Label(root)
        self.image_label.pack(pady=10)

        self.progress_var = tk.IntVar()
        self.progress_bar = tk.ttk.Progressbar(root, variable=self.progress_var, maximum=100)
        self.progress_bar.pack(pady=10)

        self.history = []

    def change_model(self, model_name):
        self.model = self.models[model_name]

    def train_model(self):
        """
        开始训练模型。
        """
        try:
            epochs = int(self.epochs_entry.get())
            self.config['training']['epochs'] = epochs
            threading.Thread(target=self._train_model_thread).start()
        except ValueError:
            messagebox.showerror("错误", "请输入有效的训练轮次数")

    def _train_model_thread(self):
        """
        训练模型的线程。
        """
        try:
            train_model(self.config)
            self.model = load_model(self.config['model']['path'], self.config['model']['text_encoder_model_name'], self.config['model']['audio_generator_model_name'])
            self.model.to(self.device)
            messagebox.showinfo("成功", "模型训练完成")
        except Exception as e:
            messagebox.showerror("错误", str(e))

    def generate_multimodal(self):
        """
        生成多模态数据。
        """
        text = self.text_input.get("1.0", tk.END).strip()
        if not text:
            messagebox.showwarning("警告", "请输入文本")
            return

        self.model.eval()
        with torch.no_grad():
            input_tensor = preprocess_text([text], self.model.text_encoder.tokenizer)
            input_tensor = {k: v.to(self.device) for k, v in input_tensor.items()}
            image, video, audio = self.model(input_tensor['input_ids'], input_tensor['attention_mask'])

            image = image.squeeze(0).detach().cpu().numpy()
            image = (image * 127.5 + 127.5).astype('uint8')
            image = Image.fromarray(image.transpose(1, 2, 0))

            # 显示图像
            img_tk = ImageTk.PhotoImage(image)
            self.image_label.config(image=img_tk)
            self.image_label.image = img_tk

            # 保存图像
            save_image(image, f"{self.config['data']['image_output_dir']}/{text}.png")
            save_video(video, f"{self.config['data']['video_output_dir']}/{text}.mp4")
            save_audio(audio, f"{self.config['data']['audio_output_dir']}/{text}.wav")

            self.history.append((text, image, video, audio))
            messagebox.showinfo("成功", "多模态数据已生成并保存")

# 输出项目目录及所有文件
def list_files(startpath):
    """
    输出项目目录及所有文件。
    :param startpath: 项目根目录
    """
    for root, dirs, files in os.walk(startpath):
        level = root.replace(startpath, '').count(os.sep)
        indent = ' ' * 4 * (level)
        print('{}{}/'.format(indent, os.path.basename(root)))
        subindent = ' ' * 4 * (level + 1)
        for f in files:
            print('{}{}'.format(subindent, f))

# 数据加密
def encrypt_data(data, key):
    fernet = Fernet(key)
    encrypted = fernet.encrypt(data.encode())
    return encrypted

def decrypt_data(encrypted, key):
    fernet = Fernet(key)
    decrypted = fernet.decrypt(encrypted).decode()
    return decrypted

# 模型解释性
def explain_image(model, text, device):
    model.eval()
    with torch.no_grad():
        input_tensor = preprocess_text([text], model.text_encoder.tokenizer)
        input_tensor = {k: v.to(device) for k, v in input_tensor.items()}
        image, video, audio = model(input_tensor['input_ids'], input_tensor['attention_mask'])
        image = image.squeeze(0).detach().cpu().numpy()
        image = (image * 127.5 + 127.5).astype('uint8')
        image = Image.fromarray(image.transpose(1, 2, 0))

        # 解释生成过程
        explanation = "图像生成过程如下:\n"
        explanation += "1. 文本使用BERT进行编码。\n"
        explanation += "2. 编码后的文本特征传递给图像生成器。\n"
        explanation += "3. 生成的图像经过后处理确保格式正确。"

        return image, explanation

def visualize_attention(model, text, device):
    model.eval()
    with torch.no_grad():
        input_tensor = preprocess_text([text], model.text_encoder.tokenizer)
        input_tensor = {k: v.to(device) for k, v in input_tensor.items()}
        attention = model.text_encoder.model(**input_tensor).attentions[-1].squeeze(0).mean(dim=1).cpu().numpy()

        tokens = model.text_encoder.tokenizer.tokenize(text)
        fig, ax = plt.subplots()
        cax = ax.matshow(attention, cmap='viridis')
        fig.colorbar(cax)

        ax.set_xticklabels([''] + tokens)
        ax.set_yticklabels([''] + tokens)

        plt.show()

# 自动化测试
class TestTextToImageModel(unittest.TestCase):
    def setUp(self):
        self.config = load_config('config.yaml')
        self.device = torch.device(self.config['device'])
        self.model = load_model(self.config['model']['path'], self.config['model']['text_encoder_model_name'], self.config['model']['audio_generator_model_name']).to(self.device)

    def test_generate_image(self):
        text = "美丽的日落"
        input_tensor = preprocess_text([text], self.model.text_encoder.tokenizer)
        input_tensor = {k: v.to(self.device) for k, v in input_tensor.items()}
        image, video, audio = self.model(input_tensor['input_ids'], input_tensor['attention_mask'])
        self.assertIsNotNone(image)
        self.assertIsNotNone(video)
        self.assertIsNotNone(audio)

    def test_save_image(self):
        text = "美丽的日落"
        input_tensor = preprocess_text([text], self.model.text_encoder.tokenizer)
        input_tensor = {k: v.to(self.device) for k, v in input_tensor.items()}
        image, video, audio = self.model(input_tensor['input_ids'], input_tensor['attention_mask'])
        save_image(image, "test_output.png")
        save_video(video, "test_output.mp4")
        save_audio(audio, "test_output.wav")
        self.assertTrue(os.path.exists("test_output.png"))
        self.assertTrue(os.path.exists("test_output.mp4"))
        self.assertTrue(os.path.exists("test_output.wav"))

if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

    config = load_config('config.yaml')

    # 输出项目目录及所有文件
    project_root = os.path.dirname(os.path.abspath(__file__))
    print("项目目录及所有文件:")
    list_files(project_root)

    # 检查数据集路径
    if not os.path.exists(config['data']['dataset_path']):
        raise FileNotFoundError(f"数据集路径 {config['data']['dataset_path']} 不存在")

    # 加载模型
    device = torch.device(config['device'])
    model = load_model(config['model']['path'], config['model']['text_encoder_model_name'], config['model']['audio_generator_model_name']).to(device)

    # 加载文本数据
    text_data = load_text_data(config['data']['input_file'])

    # 生成多模态数据
    generate_images_batch(model, text_data, config['data']['output_dir'])

    # 启动图形用户界面
    root = tk.Tk()
    app = TextToImageGUI(root)
    root.mainloop()

    # 运行自动化测试
    if __name__ == '__main__':
        unittest.main()

使用说明

项目结构:

config.yaml:配置文件,包含模型路径、数据路径等配置信息。

data/:数据文件夹,包含数据集和输入文本文件。

models/:模型文件夹,包含预训练模型文件。

output/:输出文件夹,包含生成的图像、视频和音频文件。

main.py:主程序文件,包含模型训练、生成和图形用户界面等功能。

README.md:使用说明文件。

配置文件 (config.yaml):

修改 device 为 'cuda' 或 'cpu',根据你的设备选择。

修改 data 中的路径,确保指向正确的数据集和输入文件。

修改 model 中的路径,确保指向正确的模型文件。

修改 training 中的参数,如学习率、批大小、训练轮次等。

运行项目:

确保安装了所有依赖库,如 torch, transformers, Pillow, tkinter, tensorboardX, cryptography 等。

运行 main.py 文件,启动图形用户界面。

在文本输入框中输入文本,点击"生成多模态数据"按钮,生成图像、视频和音频。

可以选择不同的模型进行生成,通过下拉菜单选择模型。

点击"训练模型"按钮,开始训练模型。可以在"训练轮次"输入框中设置训练轮次。

自动化测试:

运行 main.py 文件,启动自动化测试,确保模型的稳定性和可靠性。

希望这个完整的文件和使用说明能够帮助你更好地理解和使用这个项目!如果有任何问题或需要进一步的帮助,请随时告诉我。

相关推荐
多恩Stone1 分钟前
【Domain Generalization(1)】增量学习/在线学习/持续学习/迁移学习/多任务学习/元学习/领域适应/领域泛化概念理解
人工智能·学习·迁移学习
逐星ing6 分钟前
【AIGC】使用Java实现Azure语音服务批量转录功能:完整指南
java·人工智能·aigc·语音识别·azure
Fuweizn10 分钟前
转运机器人推动制造业智能化转型升级
人工智能·机器人·智能机器人
阿正的梦工坊15 分钟前
如何在梯度计算中处理bf16精度损失:混合精度训练中的误差分析
人工智能·pytorch·llm
小码贾31 分钟前
OpenCV-Python实战(14)——轮廓拟合
人工智能·python·opencv
Debroon1 小时前
基于编程语言的知识图谱表示增强大模型推理能力研究,一种提升LLM推理准确率达91.5%的结构化数据方法
人工智能·语言模型·知识图谱
qiquandongkh1 小时前
期权懂|深度虚值期权合约有哪些特性?
大数据·人工智能·区块链
工程师老罗1 小时前
Android笔试面试题AI答之非技术问题(1)
android·人工智能
hao_wujing1 小时前
InstructGPT:基于人类反馈训练语言模型遵从指令的能力
人工智能·语言模型·自然语言处理
一支王同学1 小时前
大语言模型(LLMs)数学推理的经验技巧【思维链CoT的应用方法】
人工智能·语言模型·自然语言处理