【机器学习】概述

文章目录

    • [1. 机器学习三步骤](#1. 机器学习三步骤)
    • [2. 机器学习图谱](#2. 机器学习图谱)
      • [2.1 任务类型 (Task)](#2.1 任务类型 (Task))
      • [2.2 模型选择 (Methods)](#2.2 模型选择 (Methods))
      • [2.3 学习场景 (Scenario)](#2.3 学习场景 (Scenario))

1. 机器学习三步骤

  1. 定义一个模型 (Define a set of function)

    • 选择一组合适的函数来表示模型。
  2. 评估模型好坏 (Goodness of function)

    • 找到一个损失函数,用来评价模型的性能。
  3. 选择最佳函数 (Pick the best function)

    • 在模型中选择一个最终的函数,优化其性能。

2. 机器学习图谱

2.1 任务类型 (Task)

  • 回归问题 (Regression)

    • 输出为数值,是对连续变量的预测。
  • 分类问题 (Classification)

    • 输出为类别,是对离散变量的预测。
  • 结构化问题 (Structured Prediction)

    • 机器输出的是具有结构性的结果,如语音识别、机器翻译、人脸识别等。

2.2 模型选择 (Methods)

  • 线性模型 (Linear Models)

  • 非线性模型 (Non-linear Models)

    • DNN / CNN (深度神经网络/卷积神经网络)
    • SVM (支持向量机)
    • 决策树 (Decision Trees)
    • K-NN (K近邻)
  • 同样的问题可以使用不同的模型进行解决。


2.3 学习场景 (Scenario)

  • 监督学习 (Supervised Learning)

    • 数据是有标注的,每个样本都对应一个标签。
  • 半监督学习 (Semi-supervised Learning)

    • 数据是部分有标注 和部分无标注的。
  • 无监督学习 (Unsupervised Learning)

    • 数据是无标注的,主要关注特征提取而非标签,如聚类、降维等。
  • 迁移学习 (Transfer Learning)

    • 数据来自不同的类别,有时有标注有时无标注,通过迁移知识进行学习。
  • 强化学习 (Reinforcement Learning)

    • 机器通过与环境交互获得反馈(奖励/惩罚),如AlphaGo,并基于这些反馈调整策略。

相关推荐
却道天凉_好个秋8 分钟前
深度学习(四):数据集划分
人工智能·深度学习·数据集
数字冰雹11 分钟前
“图观”端渲染场景编辑器
人工智能·编辑器
里昆11 分钟前
【AI】Tensorflow在jupyterlab中运行要注意的问题
人工智能·python·tensorflow
荼蘼32 分钟前
OpenCV 高阶 图像金字塔 用法解析及案例实现
人工智能·opencv·计算机视觉
没有梦想的咸鱼185-1037-166334 分钟前
基于R语言机器学习方法在生态经济学领域中的实践技术应用
开发语言·机器学习·数据分析·r语言
Clownseven35 分钟前
2025云计算趋势:Serverless与AI大模型如何赋能中小企业
人工智能·serverless·云计算
2401_8288906436 分钟前
使用 BERT 实现意图理解和实体识别
人工智能·python·自然语言处理·bert·transformer
Cheney8221 小时前
华为Ai岗机考20250903完整真题
人工智能·华为
Webb Yu1 小时前
Azure Databricks 实践:数据分析、机器学习、ETL 与 Delta Lake
机器学习·数据分析·azure
新智元1 小时前
=COPILOT() 函数横空出世!AI 自动写公式效率起飞,网友:让 Excel 再次伟大
人工智能·openai