【机器学习】概述

文章目录

    • [1. 机器学习三步骤](#1. 机器学习三步骤)
    • [2. 机器学习图谱](#2. 机器学习图谱)
      • [2.1 任务类型 (Task)](#2.1 任务类型 (Task))
      • [2.2 模型选择 (Methods)](#2.2 模型选择 (Methods))
      • [2.3 学习场景 (Scenario)](#2.3 学习场景 (Scenario))

1. 机器学习三步骤

  1. 定义一个模型 (Define a set of function)

    • 选择一组合适的函数来表示模型。
  2. 评估模型好坏 (Goodness of function)

    • 找到一个损失函数,用来评价模型的性能。
  3. 选择最佳函数 (Pick the best function)

    • 在模型中选择一个最终的函数,优化其性能。

2. 机器学习图谱

2.1 任务类型 (Task)

  • 回归问题 (Regression)

    • 输出为数值,是对连续变量的预测。
  • 分类问题 (Classification)

    • 输出为类别,是对离散变量的预测。
  • 结构化问题 (Structured Prediction)

    • 机器输出的是具有结构性的结果,如语音识别、机器翻译、人脸识别等。

2.2 模型选择 (Methods)

  • 线性模型 (Linear Models)

  • 非线性模型 (Non-linear Models)

    • DNN / CNN (深度神经网络/卷积神经网络)
    • SVM (支持向量机)
    • 决策树 (Decision Trees)
    • K-NN (K近邻)
  • 同样的问题可以使用不同的模型进行解决。


2.3 学习场景 (Scenario)

  • 监督学习 (Supervised Learning)

    • 数据是有标注的,每个样本都对应一个标签。
  • 半监督学习 (Semi-supervised Learning)

    • 数据是部分有标注 和部分无标注的。
  • 无监督学习 (Unsupervised Learning)

    • 数据是无标注的,主要关注特征提取而非标签,如聚类、降维等。
  • 迁移学习 (Transfer Learning)

    • 数据来自不同的类别,有时有标注有时无标注,通过迁移知识进行学习。
  • 强化学习 (Reinforcement Learning)

    • 机器通过与环境交互获得反馈(奖励/惩罚),如AlphaGo,并基于这些反馈调整策略。

相关推荐
ARM+FPGA+AI工业主板定制专家2 小时前
基于GPS/PTP/gPTP的自动驾驶数据同步授时方案
人工智能·机器学习·自动驾驶
长鸳词羡2 小时前
wordpiece、unigram、sentencepiece基本原理
人工智能
ㄣ知冷煖★2 小时前
【GPT5系列】ChatGPT5 提示词工程指南
人工智能
科士威传动2 小时前
丝杆支撑座在印刷设备如何精准运行?
人工智能·科技·自动化·制造
taxunjishu3 小时前
DeviceNet 转 Modbus TCP 协议转换在 S7-1200 PLC化工反应釜中的应用
运维·人工智能·物联网·自动化·区块链
kalvin_y_liu4 小时前
智能体框架大PK!谷歌ADK VS 微软Semantic Kernel
人工智能·microsoft·谷歌·智能体
爱看科技4 小时前
智能眼镜行业腾飞在即,苹果/微美全息锚定“AR+AI眼镜融合”之路抢滩市场!
人工智能·ar
Juchecar7 小时前
LLM模型与ML算法之间的关系
人工智能
FIN66687 小时前
昂瑞微:深耕射频“芯”赛道以硬核实力冲刺科创板大门
前端·人工智能·科技·前端框架·信息与通信·智能
benben0447 小时前
京东agent之joyagent解读
人工智能