你有哪些Deep Learning(RNN、CNN)调参的经验?

在深度学习的实践中,调参是一项既艺术又科学的工作。它不仅需要理论知识的支撑,还需要大量的实践经验。以下是一些在RNN和CNN模型调参中积累的经验,希望对正在这个领域摸索的朋友们有所帮助。

1. 从成熟的开源项目开始

对于初学者来说,不建议一开始就自己从头写模型。应该先使用成熟的开源项目及其默认配置,比如各种经典模型的复现或者模型原作者提供的代码仓库。这样做的好处是,你可以在自己的数据集上快速跑一遍,同时仔细研究代码中的细节,最后再根据自己的需要进行修改。

2. 梯度裁剪(Gradient Clipping)

在训练RNN时,不加梯度裁剪很容易导致损失(loss)突然变成NaN。这是因为梯度爆炸问题,梯度裁剪可以有效控制梯度的大小,防止这种情况发生。

3. 学习率的设置

在进行如语言模型或机器翻译等任务时,如果使用输入输出嵌入(tying input&output embedding)共享参数,学习率需要设置得非常小,否则也容易导致NaN问题。

4. 数据规模的考量

面对大规模数据集时,不建议一开始就在全量数据上训练。可以先用1/100或1/10的数据量进行训练,对模型性能和训练时间有一个初步的估计,再外推全量数据的训练时间。这样可以避免在没有足够信心的情况下进行大规模实验。

5. 超参数的重要性

不要只关注模型结构的美观,而忽视了调参数的论文或实验报告。这些文献中的超参数设置和实验细节对于理解模型性能至关重要。例如,BERT+使用的激活函数是GELU而非ReLU,这一点在实验中经常被忽视。

6. 初始学习率的确定

初始学习率的设置往往受到batch size、sequence length等因素的影响。建议首先计算per token loss,然后从一个较小的值开始,逐步指数增大学习率进行训练,观察损失函数的变化,选择损失下降最快的学习率。

7. Subword Tokenization

在处理文本数据时,subword tokenization通常能够提供稳定的性能,可以直接应用。

8. GPU与CPU的错误处理

当GPU报错时,尽量在CPU上重跑,因为CPU的错误信息通常更友好,有助于快速定位问题。

9. 耐心的重要性

最后,但同样重要的是耐心。调参是一个需要时间和耐心的过程,很多人因为缺乏耐心而浪费了大量时间。调参不是一蹴而就的,需要不断地尝试和调整。

以上经验希望能为你的深度学习调参之路提供一些指导。记住,调参是一个不断学习和探索的过程,每一次实验都是向成功迈进的一步。

相关推荐
sz-lcw1 小时前
MySQL知识笔记
笔记·mysql·adb
古译汉书2 小时前
嵌入式铁头山羊STM32-各章节详细笔记-查阅传送门
数据结构·笔记·stm32·单片机·嵌入式硬件·个人开发
mCell3 小时前
长期以来我对 LLM 的误解
深度学习·llm·ollama
_pinnacle_4 小时前
打开神经网络的黑箱(三) 卷积神经网络(CNN)的模型逻辑
人工智能·神经网络·cnn·黑箱·卷积网络
Ada's4 小时前
深度学习在自动驾驶上应用(二)
人工智能·深度学习·自动驾驶
2301_800050994 小时前
DNS 服务器
linux·运维·笔记
汇能感知4 小时前
光谱相机的未来趋势
经验分享·笔记·科技
机器学习之心5 小时前
198种组合算法+优化BiLSTM神经网络+SHAP分析+新数据预测+多输出!深度学习可解释分析,强烈安利,粉丝必备!
深度学习·神经网络·shap分析·新数据预测·198种组合算法·优化bilstm神经网络·多输出
charieli-fh5 小时前
指令微调数据评估与影响:构建高质量大语言模型的关键
人工智能·深度学习·语言模型
Coovally AI模型快速验证5 小时前
从避障到实时建图:机器学习如何让无人机更智能、更安全、更实用(附微型机载演示示例)
人工智能·深度学习·神经网络·学习·安全·机器学习·无人机