CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比

CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比

目录

预测效果










基本介绍

基于CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测一键对比(仅运行一个main即可)

Matlab代码,每个模型的预测结果和组合对比结果都有!

1.无需繁琐步骤,只需要运行一个main即可一键出所有图像。

2.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!

3.CPO优化参数为:隐藏层节点数,学习率,正则化系数

4.CPO作为24年新算法,冠豪猪优化器(Crested Porcupine Optimizer,CPO)。该成果于2024年1月发表在中科院1区SCI期刊Knowledge-Based Systems上。

运行环境要求MATLAB版本为2023b及其以上

评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多

代码中文注释清晰,质量极高,赠送测试数据集,可以直接运行源程序。替换你的数据即可用 适合新手小白

程序设计

  • 完整代码私信回复CPO-CNN-BiLSTM-Attention、CNN-BiLSTM-Attention、CPO-CNN-BiLSTM、CNN-BiLSTM四模型对比多变量时序预测
clike 复制代码
%%  CSDN:机器学习之心
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
result = xlsread('数据集.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数
kim = 2;                       % 延时步长(前面多行历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测
nim = size(result, 2) - 1;     % 原始数据的特征是数目

%%  划分数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1 + zim, 1: end - 1)', 1, ...
        (kim + zim) * nim), result(i + kim + zim - 1, end)];
end

%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征长度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, -1, 1);%将训练集和测试集的数据调整到0到1之间
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, -1, 1);% 对测试集数据做归一化
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
p_train =  double(reshape(p_train, f_, 1, 1, M));
p_test  =  double(reshape(p_test , f_, 1, 1, N));
t_train =  double(t_train)';
t_test  =  double(t_test )';

%%  数据格式转换
for i = 1 : M
    Lp_train{i, 1} = p_train(:, :, 1, i);
end

for i = 1 : N
    Lp_test{i, 1}  = p_test( :, :, 1, i);
end


%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [
    sequenceInputLayer([f_, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[f_, 1, 1]
    sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [
    convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1],16个特征图
    reluLayer("Name", "relu_1")                                          % Relu 激活层
    convolution2dLayer([3, 1], 32, "Name", "conv_2", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1],32个特征图
    reluLayer("Name", "relu_2")];                                        % Relu 激活层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中

tempLayers = [
    sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层
    flattenLayer("Name", "flatten")                                  % 网络铺平层

    fullyConnectedLayer(1, "Name", "fc")                             % 全连接层
    regressionLayer("Name", "regressionoutput")];                    % 回归层

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501

[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
爱学习的uu3 分钟前
KAGGLE竞赛实战2-捷信金融违约预测竞赛-part1-数据探索及baseline建立
人工智能·python·决策树·机器学习·金融·数据挖掘·逻辑回归
Chatopera 研发团队5 分钟前
Launch Linux( ubuntu14.04) GPU Acc machine in AWS
linux·人工智能·gpu算力·aws
盼小辉丶17 分钟前
TensorFlow深度学习实战(4)——正则化技术详解
人工智能·深度学习·tensorflow
AnRan080842 分钟前
ChatGPT如何赋能办公
人工智能·chatgpt
量子位1 小时前
陈丹琦团队降本大法又来了:数据砍掉三分之一,性能却完全不减
人工智能·llm
IT古董1 小时前
【机器学习】机器学习的基本分类-自监督学习(Self-supervised Learning)
人工智能·学习·机器学习·分类
字节跳动技术团队1 小时前
ICLR 2025 Workshop 征稿:推动基础模型的开源、开放、可复现
前端·人工智能·后端
鸟哥大大1 小时前
Seed-TTS: A Family of High-Quality Versatile Speech Generation Models
人工智能·深度学习·机器学习·aigc·语音识别
是十一月末2 小时前
Opencv查找、绘制轮廓、圆形矩形轮廓和近似轮廓
人工智能·python·opencv·计算机视觉