Elasticsearch:normalizer

一、概述

‌Elastic normalizer‌是Elasticsearch中用于处理keyword类型字段的一种工具,主要用于对字段进行规范化处理,确保在索引和查询时保持一致性。

Normalizer与analyzer类似,都是对字段进行处理,但normalizer不会对字段进行分词,即没有tokenizer。它主要用于keyword类型的字段(不能再其他字段设置normalizer),可以在索引和查询时对字段值进行额外的处理,如转换为小写。例如,可以使用normalizer将字段值转换为小写,这在处理大小写不敏感的查询时非常有用‌。

二、normalizer的属性

normalizer仅仅有 char filters和token filters,具有的filter为:arabic_normalization, asciifolding, bengali_normalization, cjk_width, decimal_digit, elision, german_normalization, hindi_normalization, indic_normalization, lowercase, pattern_replace, persian_normalization, scandinavian_folding, serbian_normalization, sorani_normalization, trim, uppercase.

其中lowercase为Elasticsearch内置filter,其他的filter需要自定义配置。

自定义的chat filter和filter:

复制代码
PUT index
{
  "settings": {
    "analysis": {
      "char_filter": {
        "quote": {
          "type": "mapping",
          "mappings": [
            "<< => \"",
            ">> => \""
          ]
        }
      },
      "normalizer": {
        "my_normalizer": {
          "type": "custom",
          "char_filter": ["quote"],
          "filter": ["lowercase", "asciifolding"]
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "foo": {
        "type": "keyword",
        "normalizer": "my_normalizer"
      }
    }
  }
}

三、验证只有keyword类型可以设置normalizer

创建如下mapping,并将类型为text的name字段设置上normalizer

复制代码
PUT test_index
{
  "mappings": {
    "properties": {
      "name": {
        "type": "text",
        "analyzer": "my_analyzer", 
        "fields": {
          "keyword": {
            "type": "keyword",
            "normalizer": "my_normalizer"
          }
        }
      },
      "title": {
        "type": "text",
        "analyzer": "standard",
        "fields": {
          "keyword": {
            "type": "keyword"
          }
        }
      }
    }
  },
  "settings": {
    "analysis": {
      "normalizer": {
        "my_normalizer": {
          "filter": ["lowercase"],
          "char_filter": []
        }
      },
      "analyzer": {
        "my_analyzer": {
          "filter":  ["lowercase"],
          "tokenizer": "standard"
        }
      }
    }
  }
}

提示如下错误信息:

相关推荐
数智顾问7 小时前
【73页PPT】美的简单高效的管理逻辑(附下载方式)
大数据·人工智能·产品运营
和科比合砍81分7 小时前
ES模块(ESM)、CommonJS(CJS)和UMD三种格式
大数据·elasticsearch·搜索引擎
Britz_Kevin7 小时前
从零开始的云计算生活——第五十九天,基于Jenkins自动打包并部署Tomcat环境
运维·jenkins·生活
瓦哥架构实战8 小时前
从 Prompt 到 Context:LLM OS 时代的核心工程范式演进
大数据
weixin_lynhgworld9 小时前
盲盒抽卡机小程序系统开发:以技术创新驱动娱乐体验升级
大数据·盲盒·抽谷机
TDengine (老段)10 小时前
TDengine 时间函数 TODAY() 用户手册
大数据·数据库·物联网·oracle·时序数据库·tdengine·涛思数据
悟乙己11 小时前
数据科学家如何更好地展示自己的能力
大数据·数据库·数据科学家
东哥说-MES|从入门到精通11 小时前
Mazak MTF 2025制造未来参观总结
大数据·网络·人工智能·制造·智能制造·数字化
盟接之桥11 小时前
盟接之桥说制造:在安全、确定与及时之间,构建品质、交期与反应速度的动态平衡
大数据·运维·安全·汽车·制造·devops
链上日记12 小时前
STC携手VEX发起全球首个碳资产RWA生态,泰国峰会即将引爆绿色金融
大数据