Hive分区再分桶表

在Hive中,**数据通常是根据分区(partition)来组织的,但是对于大数据集,单层分区可能不够用,因此可以进一步细分为桶(bucket)。**桶可以用于提供额外的并行处理和优化查询性能。
在这种情况下,数据首先根据分区键进行分区,然后在每个分区内进行分桶。

1、创建分区分桶表:

sql 复制代码
CREATE TABLE sales (
      date STRING,
      amount DOUBLE,
      region STRING
  ) PARTITIONED BY (region)
  CLUSTERED BY (amount) INTO 4 BUCKETS;

2、向分区分桶表中添加数据:

python 复制代码
INSERT INTO sales PARTITION (region) VALUES ('2024-01-01', 100.0, 'east');

3、查询分区分桶表:

sql 复制代码
SELECT * FROM sales WHERE region = 'east' AND amount BETWEEN 50.0 AND 150.0;

在实际应用中,合理地使用分区和分桶可以显著提高Hive表的查询效率和数据管理的便利性。设计时需要考虑数据的特性和查询模式,以选择最合适的分区键和分桶策略。

又如:hive分区再分桶示例

当你需要将数据再分桶时,你需要在创建表的时候指定桶的数量和桶的列。以下是一个创建带有桶的Hive表的例子:

sql 复制代码
CREATE TABLE my_table (
    id INT,
    data STRING
)
PARTITIONED BY (date STRING)
CLUSTERED BY (id) SORTED BY (id ASC) INTO 32 BUCKETS;

在这个例子中,**表my_table按date分区,并且按id字段进一步分桶。**每个桶中的数据将根据id字段的值被划分到不同的文件中。SORTED BY (id ASC)表示每个桶内的数据将按id升序排序。INTO 32 BUCKETS表示总共有32个桶。

当你查询这个表时,Hive会根据分区和桶的定义来优化查询,以提高并行处理和查询效率。

相关推荐
昊昊该干饭了2 小时前
数仓建模(二) 从关系型数据库到数据仓库的演变
大数据·数据仓库·数据库架构
SelectDB技术团队6 小时前
计算效率提升 10 倍,存储成本降低 60%,灵犀科技基于 Apache Doris 建设统一数据服务平台
大数据·数据库·数据仓库·数据分析·doris
B站计算机毕业设计超人6 小时前
计算机毕业设计Python+Vue.js游戏推荐系统 Steam游戏推荐系统 Django Flask 游 戏可视化 游戏数据分析 游戏大数据 爬虫
大数据·hadoop·算法·机器学习·spark·网络爬虫·数据可视化
flying robot7 小时前
Hadoop、Flink、Spark和Kafka
hadoop·flink·spark
武子康7 小时前
大数据-269 实时数仓 - DIM DW ADS 层处理 Scala实现将数据写出HBase等
java·大数据·数据仓库·后端·flink·scala·hbase
熟透的蜗牛9 小时前
大数据技术-Hadoop(四)Yarn的介绍与使用
大数据·hadoop·分布式
幽兰的天空18 小时前
Servlet中配置和使用过滤器
hive·hadoop·servlet
雪芽蓝域zzs1 天前
JavaWeb开发(五)Servlet-ServletContext
hive·hadoop·servlet
我不会敲代码a1 天前
hive on spark报错解决(基于hive-3.1.3和spark-2.3.0)
hive·hadoop·spark
筒栗子1 天前
复习打卡大数据篇——HIVE 01
大数据·hive·hadoop