Hive分区再分桶表

在Hive中,**数据通常是根据分区(partition)来组织的,但是对于大数据集,单层分区可能不够用,因此可以进一步细分为桶(bucket)。**桶可以用于提供额外的并行处理和优化查询性能。
在这种情况下,数据首先根据分区键进行分区,然后在每个分区内进行分桶。

1、创建分区分桶表:

sql 复制代码
CREATE TABLE sales (
      date STRING,
      amount DOUBLE,
      region STRING
  ) PARTITIONED BY (region)
  CLUSTERED BY (amount) INTO 4 BUCKETS;

2、向分区分桶表中添加数据:

python 复制代码
INSERT INTO sales PARTITION (region) VALUES ('2024-01-01', 100.0, 'east');

3、查询分区分桶表:

sql 复制代码
SELECT * FROM sales WHERE region = 'east' AND amount BETWEEN 50.0 AND 150.0;

在实际应用中,合理地使用分区和分桶可以显著提高Hive表的查询效率和数据管理的便利性。设计时需要考虑数据的特性和查询模式,以选择最合适的分区键和分桶策略。

又如:hive分区再分桶示例

当你需要将数据再分桶时,你需要在创建表的时候指定桶的数量和桶的列。以下是一个创建带有桶的Hive表的例子:

sql 复制代码
CREATE TABLE my_table (
    id INT,
    data STRING
)
PARTITIONED BY (date STRING)
CLUSTERED BY (id) SORTED BY (id ASC) INTO 32 BUCKETS;

在这个例子中,**表my_table按date分区,并且按id字段进一步分桶。**每个桶中的数据将根据id字段的值被划分到不同的文件中。SORTED BY (id ASC)表示每个桶内的数据将按id升序排序。INTO 32 BUCKETS表示总共有32个桶。

当你查询这个表时,Hive会根据分区和桶的定义来优化查询,以提高并行处理和查询效率。

相关推荐
好大哥呀2 小时前
Hadoop yarn
大数据·hadoop·分布式
红队it2 小时前
【数据分析】基于Spark链家网租房数据分析可视化大屏(完整系统源码+数据库+开发笔记+详细部署教程+虚拟机分布式启动教程)✅
java·数据库·hadoop·分布式·python·数据分析·spark
本旺1 天前
【数据开发离谱场景记录】Hive + ES 复杂查询场景处理
hive·hadoop·elasticsearch
莫叫石榴姐1 天前
Doris为2.1版本,但json_each不可以用解决方法
数据仓库·json
无泪无花月隐星沉1 天前
uos server 1070e部署Hadoop
大数据·运维·服务器·hadoop·分布式·uos·国产化os
悟能不能悟2 天前
springboot全局异常
大数据·hive·spring boot
是阿威啊2 天前
【第一站】本地虚拟机部署Hadoop分布式集群
大数据·linux·hadoop·分布式
lightningyang2 天前
Hadoop 分布式集群配置(OpenEuler 1主2)
hadoop·openeuler·天枢一体化虚拟仿真靶场平台
是阿威啊2 天前
【第六站】测试本地项目连接虚拟机上的大数据集群
大数据·linux·hive·hadoop·spark·yarn
老徐电商数据笔记2 天前
技术复盘第八篇:从“数据烟囱”到“能力引擎”:中型电商数仓重构实战手册
大数据·数据仓库·重构·数据中台·用户画像·技术面试