Hive分区再分桶表

在Hive中,**数据通常是根据分区(partition)来组织的,但是对于大数据集,单层分区可能不够用,因此可以进一步细分为桶(bucket)。**桶可以用于提供额外的并行处理和优化查询性能。
在这种情况下,数据首先根据分区键进行分区,然后在每个分区内进行分桶。

1、创建分区分桶表:

sql 复制代码
CREATE TABLE sales (
      date STRING,
      amount DOUBLE,
      region STRING
  ) PARTITIONED BY (region)
  CLUSTERED BY (amount) INTO 4 BUCKETS;

2、向分区分桶表中添加数据:

python 复制代码
INSERT INTO sales PARTITION (region) VALUES ('2024-01-01', 100.0, 'east');

3、查询分区分桶表:

sql 复制代码
SELECT * FROM sales WHERE region = 'east' AND amount BETWEEN 50.0 AND 150.0;

在实际应用中,合理地使用分区和分桶可以显著提高Hive表的查询效率和数据管理的便利性。设计时需要考虑数据的特性和查询模式,以选择最合适的分区键和分桶策略。

又如:hive分区再分桶示例

当你需要将数据再分桶时,你需要在创建表的时候指定桶的数量和桶的列。以下是一个创建带有桶的Hive表的例子:

sql 复制代码
CREATE TABLE my_table (
    id INT,
    data STRING
)
PARTITIONED BY (date STRING)
CLUSTERED BY (id) SORTED BY (id ASC) INTO 32 BUCKETS;

在这个例子中,**表my_table按date分区,并且按id字段进一步分桶。**每个桶中的数据将根据id字段的值被划分到不同的文件中。SORTED BY (id ASC)表示每个桶内的数据将按id升序排序。INTO 32 BUCKETS表示总共有32个桶。

当你查询这个表时,Hive会根据分区和桶的定义来优化查询,以提高并行处理和查询效率。

相关推荐
大鳥1 天前
企业级 Hive on Spark 开发规范
hive·hadoop·spark
90的程序爱好者1 天前
Kettle多张表数据抽取操作步骤
数据库·数据仓库·数据挖掘
QQ12958455041 天前
SSAS - 发货主题数据第1阶
数据仓库·数据分析
Hello.Reader1 天前
Flink × Hive HiveCatalog 一键接入元数据,Flink 直接读写 Hive 表
大数据·hive·flink
Hello.Reader1 天前
Flink + Hive Functions HiveModule、原生聚合加速、复用 Hive UDF/UDTF/UDAF
大数据·hive·flink
brave_zhao1 天前
spoon如何连接carte如何将.ktr任务或者.kjb任务提交个远程carte服务让,carte的服务端来执行 etl脚本的任务呢?
数据仓库·etl
Hello.Reader1 天前
Flink Hive 把 Hive 表变成“可流式消费”的数仓底座
大数据·hive·flink
B站计算机毕业设计超人2 天前
计算机毕业设计Python知识图谱中华古诗词可视化 古诗词情感分析 古诗词智能问答系统 AI大模型自动写诗 大数据毕业设计(源码+LW文档+PPT+讲解)
大数据·人工智能·hadoop·python·机器学习·知识图谱·课程设计
B站计算机毕业设计超人2 天前
计算机毕业设计Python+大模型音乐推荐系统 音乐数据分析 音乐可视化 音乐爬虫 知识图谱 大数据毕业设计
人工智能·hadoop·爬虫·python·数据分析·知识图谱·课程设计
归去来?2 天前
记录一次从https接口提取25G大文件csv并落表的经历
大数据·数据仓库·hive·python·网络协议·5g·https