回归预测 | MATLAB实现CNN-BiLSTM-Attention多输入单输出回归预测

回归预测 | MATLAB实现CNN-BiLSTM-Attention多输入单输出回归预测

目录

预测效果


基本介绍

一、方法概述

CNN-BiLSTM-Attention多输入单输出回归预测方法旨在通过融合CNN的局部特征提取能力、BiLSTM的序列建模能力以及注意力机制的特征权重分配能力,实现对多输入特征的单输出回归预测。该方法适用于具有复杂特征依赖关系和时序特性的数据集。

二、模型组成

卷积神经网络(CNN):

主要用于提取输入数据的局部特征。

通过多层卷积和池化操作,CNN可以有效地学习不同层次的特征表示,并降低数据的维度。

双向长短期记忆网络(BiLSTM):

用于处理具有时序特性的数据。

BiLSTM能够捕捉数据中的长期依赖关系,并学习前后文信息,从而提高模型的预测精度。

注意力机制(Attention):

赋予不同特征不同的权重,从而突出关键特征并抑制不重要的特征。

在本模型中,注意力机制用于融合CNN和BiLSTM的输出特征,并根据特征的重要性进行加权平均,以提高模型对关键信息的关注度。

三、模型实现步骤

数据预处理:

对输入数据进行归一化、去噪等预处理操作。

将数据划分为训练集和测试集。

模型构建:

构建CNN模块以提取输入数据的局部特征。

构建BiLSTM模块以捕捉数据中的时序特性。

引入注意力机制以融合CNN和BiLSTM的输出特征,并生成加权后的综合特征。

构建输出层以生成回归预测结果。

模型训练:

设置训练参数,如优化算法、最大训练次数、学习率等。

使用训练集数据对模型进行训练,并监控训练过程中的损失函数和评价指标。

模型评估:

使用测试集数据对训练好的模型进行评估。

计算并输出评价指标,如R²、MAE、MAPE、MSE等,以评估模型的预测性能。

程序设计

clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc  

%% 导入数据
data =  readmatrix('day.csv');
data = data(:,3:16);
res=data(randperm(size(data,1)),:);    %此行代码用于打乱原始样本,使训练集测试集随机被抽取,有助于更新预测结果。
num_samples = size(res,1);   %样本个数


% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺

for i = 1:size(P_train,2)
    trainD{i,:} = (reshape(p_train(:,i),size(p_train,1),1,1));
end

for i = 1:size(p_test,2)
    testD{i,:} = (reshape(p_test(:,i),size(p_test,1),1,1));
end


targetD =  t_train;
targetD_test  =  t_test;

numFeatures = size(p_train,1);


layers0 = [ ...

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128267322?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128234920?spm=1001.2014.3001.5501

相关推荐
简简单单做算法14 小时前
基于GA遗传优化CNN-BiLSTM网络模型的多输入单输出回归预测算法matlab仿真
回归预测·多输入单输出·cnn-bilstm·ga遗传优化·ga-cnn-bilstm
大千AI助手1 天前
Softmax回归:原理、实现与多分类问题的基石
人工智能·机器学习·分类·数据挖掘·回归·softmax·大千ai助手
山土成旧客2 天前
机器学习打卡DAY18 | 回归问题全解析:模型对比、置信区间与Bootstrap实战
机器学习·回归·bootstrap
闻缺陷则喜何志丹2 天前
【超音速专利 CN116777899A】基于回归模型的工业图像关键点检测方法、系统及平台
人工智能·数据挖掘·回归·专利·超音速
玦尘、2 天前
《统计学习方法》第6章——逻辑斯谛回归与最大熵模型(上)【学习笔记】
机器学习·回归·学习方法
数据科学小丫2 天前
算法:线性回归
算法·回归·线性回归
能源系统预测和优化研究3 天前
【原创代码改进】基于贝叶斯优化的PatchTST综合能源负荷多变量时间序列预测
算法·回归·transformer·能源
Aspect of twilight4 天前
各种attention的变体:MHA,GQA,MQA,MLA(DeepSeek-V2)详解
人工智能·attention
weixin_457760005 天前
EIOU (Efficient IoU): 高效边界框回归损失的解析
人工智能·数据挖掘·回归
smile_Iris6 天前
Day 27 pipeline 管道
机器学习·回归