决策树(二)属性选择度量之基尼系数详细讲解

在上篇文章中,已经介绍了属性选择度量的信息增益,接下来本篇文章将介绍最后一个常用属性选择度量:基尼系数(Gini)。

熵的计算涉及对数运算比较耗时,基尼系数在简化计算的同时还保留了熵的优点。基尼系数代表了模型的不纯度,基尼系数越小,纯度越高,选择该特征进行劈划也越好。这和信息增益(比)正好相反。

假设,用X表示随机变量,随机变量的取值为x1, x2 ,x3... 在n分类问题中便有n个取值,基尼系数的计算公式如下:

其中pi为类别i出现的频率,即类别为i的样本占总样本个数的比率,Σ为求和符号,即对所有的pi^2进行求和。

当引入某个用于分类的变量A,假设属性A有m个不同的值,则变量A划分后的基尼系数的计算公式为:

gini(Xi)为按属性A分划后的各子集的基尼系数,|X|为总样本个数,| Xi|为划分后的各类的样本量。

☀公式很复杂,这是什么意思呢?接下来,咱们把看起来高级的问题"低级化",解释一下gini(X)这个公式。

(1)基尼系数的目的是衡量不平等程度。当我们求pi^2并求和时,这个操作实际上是在给占比大的部分赋予更大的权重。

**例如:**在两个人分东西的例子中,A 占 90%,B 占 10%。当我们计算

时,占比大的 A(0.9)的平方 0.81 远大于占比小的 B(0.1)的平方 0.01。gini(x)=1-0.82=0.18

这种权重分配方式使得基尼系数在衡量不平等时,更侧重于占比大的部分对整体不平等的贡献。在一个社会或群体的资源分配中,占比大的部分的集中程度对整体的不平等感知有更大的影响。

相关推荐
لا معنى له3 分钟前
残差网络论文学习笔记:Deep Residual Learning for Image Recognition全文翻译
网络·人工智能·笔记·深度学习·学习·机器学习
小白程序员成长日记8 分钟前
2025.11.29 力扣每日一题
数据结构·算法·leetcode
工业机器视觉设计和实现30 分钟前
lenet改vgg训练cifar10突破71分
人工智能·机器学习
在黎明的反思1 小时前
进程通信之消息队列(IPC)
算法
老鱼说AI2 小时前
算法基础教学第一步:数据结构
数据结构·python·算法
Jing_Rainbow2 小时前
【LeetCode Hot100 刷题日记(19/100)】54. 螺旋矩阵 —— 数组、矩阵、模拟、双指针、层序遍历🌀
算法·面试·程序员
地平线开发者3 小时前
征程 6 | linear 高精度输出配置方式
算法·自动驾驶
小尧嵌入式3 小时前
C++基础语法总结
开发语言·c++·stm32·单片机·嵌入式硬件·算法
white-persist3 小时前
【攻防世界】reverse | IgniteMe 详细题解 WP
c语言·汇编·数据结构·c++·python·算法·网络安全
稚辉君.MCA_P8_Java3 小时前
Gemini永久会员 归并排序(Merge Sort) 基于分治思想(Divide and Conquer)的高效排序算法
java·linux·算法·spring·排序算法