决策树(二)属性选择度量之基尼系数详细讲解

在上篇文章中,已经介绍了属性选择度量的信息增益,接下来本篇文章将介绍最后一个常用属性选择度量:基尼系数(Gini)。

熵的计算涉及对数运算比较耗时,基尼系数在简化计算的同时还保留了熵的优点。基尼系数代表了模型的不纯度,基尼系数越小,纯度越高,选择该特征进行劈划也越好。这和信息增益(比)正好相反。

假设,用X表示随机变量,随机变量的取值为x1, x2 ,x3... 在n分类问题中便有n个取值,基尼系数的计算公式如下:

其中pi为类别i出现的频率,即类别为i的样本占总样本个数的比率,Σ为求和符号,即对所有的pi^2进行求和。

当引入某个用于分类的变量A,假设属性A有m个不同的值,则变量A划分后的基尼系数的计算公式为:

gini(Xi)为按属性A分划后的各子集的基尼系数,|X|为总样本个数,| Xi|为划分后的各类的样本量。

☀公式很复杂,这是什么意思呢?接下来,咱们把看起来高级的问题"低级化",解释一下gini(X)这个公式。

(1)基尼系数的目的是衡量不平等程度。当我们求pi^2并求和时,这个操作实际上是在给占比大的部分赋予更大的权重。

**例如:**在两个人分东西的例子中,A 占 90%,B 占 10%。当我们计算

时,占比大的 A(0.9)的平方 0.81 远大于占比小的 B(0.1)的平方 0.01。gini(x)=1-0.82=0.18

这种权重分配方式使得基尼系数在衡量不平等时,更侧重于占比大的部分对整体不平等的贡献。在一个社会或群体的资源分配中,占比大的部分的集中程度对整体的不平等感知有更大的影响。

相关推荐
云天徽上3 分钟前
【数据可视化-28】2017-2025 年每月产品零售价数据可视化分析
机器学习·信息可视化·数据挖掘·数据分析·零售
图灵科竞社资讯组26 分钟前
图论基础:图存+记忆化搜索
算法·图论
硅谷秋水28 分钟前
CoT-Drive:利用 LLM 和思维链提示实现自动驾驶的高效运动预测
人工智能·机器学习·语言模型·自动驾驶
chuxinweihui39 分钟前
数据结构——栈与队列
c语言·开发语言·数据结构·学习·算法·链表
IT古董1 小时前
【漫话机器学习系列】214.停用词(Stop Words)
人工智能·机器学习
爱编程的鱼1 小时前
C# 结构(Struct)
开发语言·人工智能·算法·c#
啊我不会诶1 小时前
CF每日4题
算法
uhakadotcom2 小时前
人工智能如何改变医疗行业:简单易懂的基础介绍与实用案例
算法·面试·github
云天徽上2 小时前
【数据可视化-27】全球网络安全威胁数据可视化分析(2015-2024)
人工智能·安全·web安全·机器学习·信息可视化·数据分析
硅谷秋水2 小时前
ORION:通过视觉-语言指令动作生成的一个整体端到端自动驾驶框架
人工智能·深度学习·机器学习·计算机视觉·语言模型·自动驾驶