题目描述:
Bubu的书架上乱成一团了!请帮助他一下吧!
他的书架上一共有n本书。我们定义混乱值是连续相同高度书本的段数。例如,如果输的高度是30,30,31,31,32,那么混乱值为3,30,32,32,31的混乱度也是3,但31,32,31,32,31的混乱度为5,这实在是太乱了。Bubu想尽可能的减少混乱度,但他有点累了,所以他决定最多取出k本书,在随意将它们放到书架上。你能帮助他吗?
输入格式:
最多会有20组测试数据。每组测试数据开头为两个整数n,k,表示总共有n本书,最多可以进行k次搬书操作。接下来一行有n个整数,表示每本书的高度,从左到右。每本书的高度是25到32间的整数。最后一组数据后有一行n=k=0。
输出格式:
对于每一组数据,输出Case标号和最终最小的混乱度。在每组数据后打印一个空行。
样例输入:
5 2
25 25 32 32 25
5 1
25 26 25 26 25
0 0
样例输出:
Case 1: 2
Case 2: 3
提示:
时间限制: 1000ms
空间限制: 256MB
系统90分 :
#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
#define rint register int
using namespace std;
int n, m, st, u, ans, x;
int a[101], f[2][101][256][9], g[256];
void se(int x)
{
for(rint i = 0; i <= m; i++)
for(rint j = 0; j < 256; j++)
for(rint k = 0; k <= 8; k++)
f[x][i][j][k] = inf;
}
int main()
{
for(rint i = 0; i < 256; i++)
for(rint j = 0; j < 8; j++)
if(i & (1 << j)) g[i]++;
while(scanf("%d%d", &n, &m) != EOF)
{
if(!n && !m) break;
st = 0;
for(rint i = 1; i <= n; i++)
{
scanf("%d", &a[i]);
a[i] -= 25;
st |= (1 << a[i]);
}
u = 0;
se(u);
f[u][0][0][8] = 0;
for(int i = 0; i < n; i++)
{
int t = a[i + 1];
u ^= 1;
se(u);
for(rint j = 0; j <= min(i, m); j++)
for(rint k = 0; k < 256; k++)
for(rint l = 0; l <= 8; l++)
{
int tmp = f[u ^ 1][j][k][l];
if(tmp == inf) continue;
f[u][j + 1][k][l] = min(f[u][j + 1][k][l], tmp);
if(l != t) f[u][j][k | (1 << t)][t] = min(f[u][j][k | (1 << t)][t], tmp + 1);
else f[u][j][k][t] = min(f[u][j][k][t], tmp);
}
}
ans = inf;
for(rint i = 0; i <= m; i++)
for(rint j = 0; j < 256; j++)
for(rint k = 0 ; k <= 8; k++)
{
if(f[u][i][j][k] == inf) continue;
int t = st ^ j;
if(f[u][i][j][k] + g[t] < ans) ans = f[u][i][j][k] + g[t];
}
printf("Case %d: %d\n\n", ++x, ans);
}
return 0;
}
优化100分:
太太太难了!!!!!!加个优化吧!!!(参考生姜666的CSDN吐槽一下!)
#include<bits/stdc++.h>
#pragma GCC optimize(1)
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#pragma GCC optimize("inline")
#pragma GCC optimize("-fgcse")
#pragma GCC optimize("-fgcse-lm")
#pragma GCC optimize("-fipa-sra")
#pragma GCC optimize("-ftree-pre")
#pragma GCC optimize("-ftree-vrp")
#pragma GCC optimize("-fpeephole2")
#pragma GCC optimize("-ffast-math")
#pragma GCC optimize("-fsched-spec")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("-falign-jumps")
#pragma GCC optimize("-falign-loops")
#pragma GCC optimize("-falign-labels")
#pragma GCC optimize("-fdevirtualize")
#pragma GCC optimize("-fcaller-saves")
#pragma GCC optimize("-fcrossjumping")
#pragma GCC optimize("-fthread-jumps")
#pragma GCC optimize("-funroll-loops")
#pragma GCC optimize("-freorder-blocks")
#pragma GCC optimize("-fschedule-insns")
#pragma GCC optimize("inline-functions")
#pragma GCC optimize("-ftree-tail-merge")
#pragma GCC optimize("-fschedule-insns2")
#pragma GCC optimize("-fstrict-aliasing")
#pragma GCC optimize("-falign-functions")
#pragma GCC optimize("-fcse-follow-jumps")
#pragma GCC optimize("-fsched-interblock")
#pragma GCC optimize("-fpartial-inlining")
#pragma GCC optimize("no-stack-protector")
#pragma GCC optimize("-freorder-functions")
#pragma GCC optimize("-findirect-inlining")
#pragma GCC optimize("-fhoist-adjacent-loads")
#pragma GCC optimize("-frerun-cse-after-loop")
#pragma GCC optimize("inline-small-functions")
#pragma GCC optimize("-finline-small-functions")
#pragma GCC optimize("-ftree-switch-conversion")
#pragma GCC optimize("-foptimize-sibling-calls")
#pragma GCC optimize("-fexpensive-optimizations")
#pragma GCC optimize("inline-functions-called-once")
#pragma GCC optimize("-fdelete-null-pointer-checks")
#define inf 0x3f3f3f3f
#define rint register int
using namespace std;
int n, m, st, u, ans, x;
int a[101], f[2][101][256][9], g[256];
void se(int x)
{
for(rint i = 0; i <= m; i++)
for(rint j = 0; j < 256; j++)
for(rint k = 0; k <= 8; k++)
f[x][i][j][k] = inf;
}
int main()
{
for(rint i = 0; i < 256; i++)
for(rint j = 0; j < 8; j++)
if(i & (1 << j)) g[i]++;
while(scanf("%d%d", &n, &m) != EOF)
{
if(!n && !m) break;
st = 0;
for(rint i = 1; i <= n; i++)
{
scanf("%d", &a[i]);
a[i] -= 25;
st |= (1 << a[i]);
}
u = 0;
se(u);
f[u][0][0][8] = 0;
for(int i = 0; i < n; i++)
{
int t = a[i + 1];
u ^= 1;
se(u);
for(rint j = 0; j <= min(i, m); j++)
for(rint k = 0; k < 256; k++)
for(rint l = 0; l <= 8; l++)
{
int tmp = f[u ^ 1][j][k][l];
if(tmp == inf) continue;
f[u][j + 1][k][l] = min(f[u][j + 1][k][l], tmp);
if(l != t) f[u][j][k | (1 << t)][t] = min(f[u][j][k | (1 << t)][t], tmp + 1);
else f[u][j][k][t] = min(f[u][j][k][t], tmp);
}
}
ans = inf;
for(rint i = 0; i <= m; i++)
for(rint j = 0; j < 256; j++)
for(rint k = 0 ; k <= 8; k++)
{
if(f[u][i][j][k] == inf) continue;
int t = st ^ j;
if(f[u][i][j][k] + g[t] < ans) ans = f[u][i][j][k] + g[t];
}
printf("Case %d: %d\n\n", ++x, ans);
}
return 0;
}
AC啦!