【内含代码】Spring Boot整合深度学习框架DJL

"

Deep Java Library是一个用于处理大规模数据处理和分析的强大工具包,它提供了丰富的数据结构和算法实现,支持高效的并行计算和分布式处理。Deep Java Library的设计目标是简化大规模数据处理任务的复杂性,提供高性能的计算能力,同时保持代码的简洁性和可读性。

将Spring Boot与Deep Java Library整合使用,可以带来多方面的技术优势。首先,Spring Boot的自动化配置和模块化设计可以极大地简化项目的初始化和管理工作,而Deep Java Library的强大数据处理能力则可以提升应用程序的性能和扩展性。其次,两者的结合可以实现更高效的资源管理和调度,优化系统的响应速度和稳定性。此外,这种整合还有助于构建更加灵活和可扩展的系统架构,适应不同的业务需求和技术挑战。

实操

首先,确保你已经安装了Java开发工具包(JDK)和Maven构建工具。然后按照以下步骤操作:

1. 创建一个新的Spring Boot项目。

2. 添加必要的依赖项到pom.xml文件中。

go 复制代码
<dependencies>
    <!-- Spring Boot Web Starter -->
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>

    <!-- DJL Core -->
    <dependency>
        <groupId>ai.djl</groupId>
        <artifactId>api</artifactId>
        <version>0.28.0</version>
    </dependency>

    <!-- DJL MXNet Engine -->
    <dependency>
        <groupId>ai.djl.mxnet</groupId>
        <artifactId>mxnet-engine</artifactId>
        <version>0.28.0</version>
        <scope>runtime</scope>
    </dependency>

    <!-- DJL Model Zoo -->
    <dependency>
        <groupId>ai.djl.basicmodelzoo</groupId>
        <artifactId>basic-model-zoo</artifactId>
        <version>0.28.0</version>
    </dependency>
</dependencies>

3. 编写一个简单的控制器来处理图像分类请求。

由于时间关系,我随手写个简单的例子吧

go 复制代码
import ai.djl.ModelException;
import ai.djl.inference.Predictor;
import ai.djl.modality.Classifications;
import ai.djl.modality.cv.Image;
import ai.djl.modality.cv.ImageFactory;
import ai.djl.repository.zoo.Criteria;
import ai.djl.repository.zoo.ZooModel;
import ai.djl.translate.TranslateException;
import org.springframework.core.io.Resource;
import org.springframework.core.io.UrlResource;
import org.springframework.http.MediaType;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.multipart.MultipartFile;

import java.io.IOException;
import java.net.MalformedURLException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

@RestController
public class ImageClassificationController {

   private final Path uploadDir = Paths.get("uploads");

   public ImageClassificationController() throws IOException {
       Files.createDirectories(uploadDir);
   }

   @PostMapping(value = "/classify", consumes = MediaType.MULTIPART_FORM_DATA_VALUE)
   public String classifyImage(@RequestParam("file") MultipartFile file) {
       try {
           // Save the uploaded file to a temporary location
           Path tempFile = uploadDir.resolve(file.getOriginalFilename());
           file.transferTo(tempFile);

           // Load image from file
           Image image = ImageFactory.getInstance().fromFile(tempFile);

           // Define criteria for loading pre-trained model
           Criteria<Image, Classifications> criteria =
                   Criteria.builder()
                           .optApplication(ai.djl.Application.CV.IMAGE_CLASSIFICATION)
                           .setTypes(Image.class, Classifications.class)
                           .build();

           // Load the model and create a predictor
           try (ZooModel<Image, Classifications> model = criteria.loadModel();
                Predictor<Image, Classifications> predictor = model.newPredictor()) {

               // Perform prediction
               Classifications classifications = predictor.predict(image);

               // Return top classification result
               return"Top Classification: " + classifications.best().getClassName();
           }
       } catch (IOException | ModelException | TranslateException e) {
           e.printStackTrace();
           return"Error processing image";
       }
   }

   private Resource loadAsResource(String filename) {
       try {
           Path file = uploadDir.resolve(filename);
           Resource resource = new UrlResource(file.toUri());
           if (resource.exists() || resource.isReadable()) {
               return resource;
           } else {
               throw new RuntimeException("Could not read file: " + filename);
           }
       } catch (MalformedURLException e) {
           throw new RuntimeException("Could not read file: " + filename, e);
       }
   }
}

上面的代码中的uploads的目录用于存储上传的图片文件。你可以根据需要更改此路径。还有一点,我的代码中使用的是DJL自带的预训练模型,你可以通过修改Criteria对象中的参数来加载不同的模型。

4. 最后就是,大家顺利run起来吧

"

确保你的系统上安装了MXNet引擎或其他支持的深度学习框架。

你可以通过运行mvn spring-boot:run命令来启动Spring Boot应用。

应用场景

面对海量数据集时,传统的单机处理方式往往力不从心。借助于Spring Boot的强大生态支持以及Deep Java Library提供的高效并行计算能力,企业能够构建出更加健壮且高效的数据处理平台。比如,在金融风控场景下,通过对历史交易记录进行分析,识别潜在的风险点,从而采取相应措施降低损失。此外,结合Kafka等消息中间件技术,还可以实现数据的实时流式处理,进一步增强系统的响应速度和服务能力。这些案例充分展示了Spring Boot与Deep Java Library结合使用所带来的巨大优势,无论是对于初创企业还是大型组织而言,都是值得探索的技术方向之一。

go 复制代码
/// ***你们的关注是我一直写作的动力
System.out.println("请添加我的绿色公主号:");
System.out.println("Java知识日历");
相关推荐
what_20183 分钟前
分布式链路跟踪
java·运维·分布式
EasyDSS8 分钟前
AI智能分析网关V4助力工厂/工地/车间/能源矿山场景玩手机行为精准检测与安全生产智能化监管
网络·人工智能
guohuang9 分钟前
构建你的第一个简单AI助手 - 入门实践
人工智能
oliveira-time12 分钟前
ArrayList和LinkedList区别
java·开发语言
潮流coder15 分钟前
IntelliJ IDEA给Controller、Service、Mapper不同文件设置不同的文件头注释模板、Velocity模板引擎
java·ide·intellij-idea
weixin_4352081615 分钟前
如何使用 Qwen3 实现 Agentic RAG?
人工智能·深度学习·自然语言处理·aigc
CS创新实验室20 分钟前
研读论文《Attention Is All You Need》(3)
人工智能·论文·transformer·注意力
AORO_BEIDOU20 分钟前
防爆手机与普通手机有什么区别
人工智能·5g·安全·智能手机·信息与通信
暴龙胡乱写博客20 分钟前
机器学习 --- 数据集
人工智能·机器学习
码农飞哥21 分钟前
互联网大厂Java求职面试实战:Spring Boot与微服务场景深度解析
java·数据库·spring boot·安全·微服务·消息队列·互联网医疗