回归与分类的评价指标

cross_validatecross_val_score中,参数scoring,与分类、聚类和回归算法的评价指标有关。

3.4.3. The scoring parameter: defining model evaluation rules

For the most common use cases, you can designate a scorer object with the scoring parameter via a string name; the table below shows all possible values. All scorer objects follow the convention that higher return values are better than lower return values. Thus metrics which measure the distance between the model and the data, like metrics.mean_squared_error, are available as 'neg_mean_squared_error' which return the negated value of the metric

对于最常见的用例,您可以通过字符串名称使用 scoring 参数指定一个评分对象;下表显示了所有可能的值。所有评分对象都遵循这样的约定:返回值越高越好。因此,像 metrics.mean_squared_error 这样衡量模型与数据之间距离的指标,会以 'neg_mean_squared_error' 的形式提供,返回该指标的负值。

1、分类

字符串 函数 公式
accuracy metrics.accuracy_score a c c u r a c y ( y , y ^ ) = 1 n ∑ i = 0 n − 1 1 ( y ^ i = y i ) accuracy(y,\hat{y}) = \frac{1}{n}\sum_{i=0}^{n-1}1(\hat{y}_i=y_i) accuracy(y,y^)=n1∑i=0n−11(y^i=yi)
balanced_accuracy metrics.balanced_accuracy_score b a l a n c e d − a c c u r a c y = 1 2 ( T P T P + F N + T N T N + F P ) balanced-accuracy=\frac{1}{2}(\frac{TP}{TP+FN}+\frac{TN}{TN+FP}) balanced−accuracy=21(TP+FNTP+TN+FPTN)
top_k_accuracy metrics.top_k_accuracy_score t o p − k a c c u r a c y ( y , y ^ ) = 1 n ∑ i = 0 n − 1 ∑ j = 1 k 1 ( f ^ i , j = y i ) top-k\ \ accuracy(y,\hat{y}) = \frac{1}{n}\sum_{i=0}^{n-1}\sum_{j=1}^{k}1(\hat{f}_{i,j}=y_i) top−k accuracy(y,y^)=n1∑i=0n−1∑j=1k1(f^i,j=yi)
average_precision metrics.average_precision_score A P = ∑ n ( R n − R n − 1 ) P n AP = \sum_{n}(R_n-R_{n-1})P_n AP=∑n(Rn−Rn−1)Pn
neg_brier_score metrics.brier_score_loss B S = 1 n ∑ i = 0 n − 1 ( y i − p i ) 2 = 1 n ∑ i = 0 n − 1 ( y i − p r e d i c t _ p r o b a ( y = 1 ) ) 2 BS= \frac{1}{n}\sum_{i=0}^{n-1}(y_i-p_i)^2=\frac{1}{n}\sum_{i=0}^{n-1}(y_i-predict\_{proba}(y=1))^2 BS=n1∑i=0n−1(yi−pi)2=n1∑i=0n−1(yi−predict_proba(y=1))2
f1 metrics.f1_score F 1 = 2 ∗ T P 2 ∗ T P + F P + F N F1=\frac{2*TP}{2*TP+FP+FN} F1=2∗TP+FP+FN2∗TP (average parameter)
neg_log_loss metrics.log_loss L l o g ( y , p ) = − l o g P r ( y ∣ p ) = − ( y l o g ( p ) + ( 1 − y ) l o g ( 1 − p ) ) L_{log}(y,p)=-logPr(y|p)=-(ylog(p)+(1-y)log(1-p)) Llog(y,p)=−logPr(y∣p)=−(ylog(p)+(1−y)log(1−p)) L l o g ( Y , P ) = − l o g P r ( Y ∣ P ) = − 1 N ∑ i = 0 N − 1 ∑ k = 0 K − 1 y i , k l o g p i , k L_{log}(Y,P)=-logPr(Y|P)=-\frac{1}{N}\sum_{i=0}^{N-1}\sum_{k=0}^{K-1}y_{i,k}logp_{i,k} Llog(Y,P)=−logPr(Y∣P)=−N1∑i=0N−1∑k=0K−1yi,klogpi,k
precision metrics.precision_score P = T P T P + F P P=\frac{TP}{TP+FP} P=TP+FPTP
recall metrics.recall_score R = T P T P + F N R=\frac{TP}{TP+FN} R=TP+FNTP
jaccard metrics.jaccard_score J ( y , y ^ ) = y ⋂ y ^ y ⋃ y ^ J(y,\hat{y})=\frac{y\bigcap\hat{y}}{y\bigcup\hat{y}} J(y,y^)=y⋃y^y⋂y^
roc_auc metrics.roc_auc_score Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores
相关推荐
叶子丶苏15 小时前
第十七节_PySide6基本窗口控件深度补充_窗口绘图类(QPicture类) 下篇
python·pyqt
c骑着乌龟追兔子15 小时前
Day 42 复习日
python
Robot侠15 小时前
视觉语言导航从入门到精通(二)
开发语言·人工智能·python·llm·vln
无限大.15 小时前
为什么玩游戏需要独立显卡?——GPU与CPU的分工协作
python·玩游戏
deephub15 小时前
llama.cpp Server 引入路由模式:多模型热切换与进程隔离机制详解
人工智能·python·深度学习·llama
桓峰基因15 小时前
SCS 60.单细胞空间转录组空间聚类(SPATA2)
人工智能·算法·机器学习·数据挖掘·聚类
简单点好不好15 小时前
2025--简单点--python之状态模式
开发语言·python·状态模式
棒棒的皮皮15 小时前
【OpenCV】Python图像处理之仿射变换
图像处理·python·opencv·计算机视觉
weixin_4462608516 小时前
FastF1: 轻松获取和分析F1数据的Python包
开发语言·python
我送炭你添花16 小时前
Pelco KBD300A 模拟器:06.用 PyQt5 实现 1:1 像素级完美复刻 Pelco KBD300A 键盘
python·qt·自动化·运维开发