回归与分类的评价指标

cross_validatecross_val_score中,参数scoring,与分类、聚类和回归算法的评价指标有关。

3.4.3. The scoring parameter: defining model evaluation rules

For the most common use cases, you can designate a scorer object with the scoring parameter via a string name; the table below shows all possible values. All scorer objects follow the convention that higher return values are better than lower return values. Thus metrics which measure the distance between the model and the data, like metrics.mean_squared_error, are available as 'neg_mean_squared_error' which return the negated value of the metric

对于最常见的用例,您可以通过字符串名称使用 scoring 参数指定一个评分对象;下表显示了所有可能的值。所有评分对象都遵循这样的约定:返回值越高越好。因此,像 metrics.mean_squared_error 这样衡量模型与数据之间距离的指标,会以 'neg_mean_squared_error' 的形式提供,返回该指标的负值。

1、分类

字符串 函数 公式
accuracy metrics.accuracy_score a c c u r a c y ( y , y ^ ) = 1 n ∑ i = 0 n − 1 1 ( y ^ i = y i ) accuracy(y,\hat{y}) = \frac{1}{n}\sum_{i=0}^{n-1}1(\hat{y}_i=y_i) accuracy(y,y^)=n1∑i=0n−11(y^i=yi)
balanced_accuracy metrics.balanced_accuracy_score b a l a n c e d − a c c u r a c y = 1 2 ( T P T P + F N + T N T N + F P ) balanced-accuracy=\frac{1}{2}(\frac{TP}{TP+FN}+\frac{TN}{TN+FP}) balanced−accuracy=21(TP+FNTP+TN+FPTN)
top_k_accuracy metrics.top_k_accuracy_score t o p − k a c c u r a c y ( y , y ^ ) = 1 n ∑ i = 0 n − 1 ∑ j = 1 k 1 ( f ^ i , j = y i ) top-k\ \ accuracy(y,\hat{y}) = \frac{1}{n}\sum_{i=0}^{n-1}\sum_{j=1}^{k}1(\hat{f}_{i,j}=y_i) top−k accuracy(y,y^)=n1∑i=0n−1∑j=1k1(f^i,j=yi)
average_precision metrics.average_precision_score A P = ∑ n ( R n − R n − 1 ) P n AP = \sum_{n}(R_n-R_{n-1})P_n AP=∑n(Rn−Rn−1)Pn
neg_brier_score metrics.brier_score_loss B S = 1 n ∑ i = 0 n − 1 ( y i − p i ) 2 = 1 n ∑ i = 0 n − 1 ( y i − p r e d i c t _ p r o b a ( y = 1 ) ) 2 BS= \frac{1}{n}\sum_{i=0}^{n-1}(y_i-p_i)^2=\frac{1}{n}\sum_{i=0}^{n-1}(y_i-predict\_{proba}(y=1))^2 BS=n1∑i=0n−1(yi−pi)2=n1∑i=0n−1(yi−predict_proba(y=1))2
f1 metrics.f1_score F 1 = 2 ∗ T P 2 ∗ T P + F P + F N F1=\frac{2*TP}{2*TP+FP+FN} F1=2∗TP+FP+FN2∗TP (average parameter)
neg_log_loss metrics.log_loss L l o g ( y , p ) = − l o g P r ( y ∣ p ) = − ( y l o g ( p ) + ( 1 − y ) l o g ( 1 − p ) ) L_{log}(y,p)=-logPr(y|p)=-(ylog(p)+(1-y)log(1-p)) Llog(y,p)=−logPr(y∣p)=−(ylog(p)+(1−y)log(1−p)) L l o g ( Y , P ) = − l o g P r ( Y ∣ P ) = − 1 N ∑ i = 0 N − 1 ∑ k = 0 K − 1 y i , k l o g p i , k L_{log}(Y,P)=-logPr(Y|P)=-\frac{1}{N}\sum_{i=0}^{N-1}\sum_{k=0}^{K-1}y_{i,k}logp_{i,k} Llog(Y,P)=−logPr(Y∣P)=−N1∑i=0N−1∑k=0K−1yi,klogpi,k
precision metrics.precision_score P = T P T P + F P P=\frac{TP}{TP+FP} P=TP+FPTP
recall metrics.recall_score R = T P T P + F N R=\frac{TP}{TP+FN} R=TP+FNTP
jaccard metrics.jaccard_score J ( y , y ^ ) = y ⋂ y ^ y ⋃ y ^ J(y,\hat{y})=\frac{y\bigcap\hat{y}}{y\bigcup\hat{y}} J(y,y^)=y⋃y^y⋂y^
roc_auc metrics.roc_auc_score Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores
相关推荐
0思必得023 分钟前
[Web自动化] Selenium处理动态网页
前端·爬虫·python·selenium·自动化
韩立学长30 分钟前
【开题答辩实录分享】以《基于Python的大学超市仓储信息管理系统的设计与实现》为例进行选题答辩实录分享
开发语言·python
qq_1927798732 分钟前
高级爬虫技巧:处理JavaScript渲染(Selenium)
jvm·数据库·python
u0109272711 小时前
使用Plotly创建交互式图表
jvm·数据库·python
爱学习的阿磊1 小时前
Python GUI开发:Tkinter入门教程
jvm·数据库·python
Imm7771 小时前
中国知名的车膜品牌推荐几家
人工智能·python
tudficdew2 小时前
实战:用Python分析某电商销售数据
jvm·数据库·python
sjjhd6522 小时前
Python日志记录(Logging)最佳实践
jvm·数据库·python
2301_821369612 小时前
用Python生成艺术:分形与算法绘图
jvm·数据库·python