回归与分类的评价指标

cross_validatecross_val_score中,参数scoring,与分类、聚类和回归算法的评价指标有关。

3.4.3. The scoring parameter: defining model evaluation rules

For the most common use cases, you can designate a scorer object with the scoring parameter via a string name; the table below shows all possible values. All scorer objects follow the convention that higher return values are better than lower return values. Thus metrics which measure the distance between the model and the data, like metrics.mean_squared_error, are available as 'neg_mean_squared_error' which return the negated value of the metric

对于最常见的用例,您可以通过字符串名称使用 scoring 参数指定一个评分对象;下表显示了所有可能的值。所有评分对象都遵循这样的约定:返回值越高越好。因此,像 metrics.mean_squared_error 这样衡量模型与数据之间距离的指标,会以 'neg_mean_squared_error' 的形式提供,返回该指标的负值。

1、分类

字符串 函数 公式
accuracy metrics.accuracy_score a c c u r a c y ( y , y ^ ) = 1 n ∑ i = 0 n − 1 1 ( y ^ i = y i ) accuracy(y,\hat{y}) = \frac{1}{n}\sum_{i=0}^{n-1}1(\hat{y}_i=y_i) accuracy(y,y^)=n1∑i=0n−11(y^i=yi)
balanced_accuracy metrics.balanced_accuracy_score b a l a n c e d − a c c u r a c y = 1 2 ( T P T P + F N + T N T N + F P ) balanced-accuracy=\frac{1}{2}(\frac{TP}{TP+FN}+\frac{TN}{TN+FP}) balanced−accuracy=21(TP+FNTP+TN+FPTN)
top_k_accuracy metrics.top_k_accuracy_score t o p − k a c c u r a c y ( y , y ^ ) = 1 n ∑ i = 0 n − 1 ∑ j = 1 k 1 ( f ^ i , j = y i ) top-k\ \ accuracy(y,\hat{y}) = \frac{1}{n}\sum_{i=0}^{n-1}\sum_{j=1}^{k}1(\hat{f}_{i,j}=y_i) top−k accuracy(y,y^)=n1∑i=0n−1∑j=1k1(f^i,j=yi)
average_precision metrics.average_precision_score A P = ∑ n ( R n − R n − 1 ) P n AP = \sum_{n}(R_n-R_{n-1})P_n AP=∑n(Rn−Rn−1)Pn
neg_brier_score metrics.brier_score_loss B S = 1 n ∑ i = 0 n − 1 ( y i − p i ) 2 = 1 n ∑ i = 0 n − 1 ( y i − p r e d i c t _ p r o b a ( y = 1 ) ) 2 BS= \frac{1}{n}\sum_{i=0}^{n-1}(y_i-p_i)^2=\frac{1}{n}\sum_{i=0}^{n-1}(y_i-predict\_{proba}(y=1))^2 BS=n1∑i=0n−1(yi−pi)2=n1∑i=0n−1(yi−predict_proba(y=1))2
f1 metrics.f1_score F 1 = 2 ∗ T P 2 ∗ T P + F P + F N F1=\frac{2*TP}{2*TP+FP+FN} F1=2∗TP+FP+FN2∗TP (average parameter)
neg_log_loss metrics.log_loss L l o g ( y , p ) = − l o g P r ( y ∣ p ) = − ( y l o g ( p ) + ( 1 − y ) l o g ( 1 − p ) ) L_{log}(y,p)=-logPr(y|p)=-(ylog(p)+(1-y)log(1-p)) Llog(y,p)=−logPr(y∣p)=−(ylog(p)+(1−y)log(1−p)) L l o g ( Y , P ) = − l o g P r ( Y ∣ P ) = − 1 N ∑ i = 0 N − 1 ∑ k = 0 K − 1 y i , k l o g p i , k L_{log}(Y,P)=-logPr(Y|P)=-\frac{1}{N}\sum_{i=0}^{N-1}\sum_{k=0}^{K-1}y_{i,k}logp_{i,k} Llog(Y,P)=−logPr(Y∣P)=−N1∑i=0N−1∑k=0K−1yi,klogpi,k
precision metrics.precision_score P = T P T P + F P P=\frac{TP}{TP+FP} P=TP+FPTP
recall metrics.recall_score R = T P T P + F N R=\frac{TP}{TP+FN} R=TP+FNTP
jaccard metrics.jaccard_score J ( y , y ^ ) = y ⋂ y ^ y ⋃ y ^ J(y,\hat{y})=\frac{y\bigcap\hat{y}}{y\bigcup\hat{y}} J(y,y^)=y⋃y^y⋂y^
roc_auc metrics.roc_auc_score Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores
相关推荐
Pocker_Spades_A13 分钟前
中秋与代码共舞:用Python、JS、Java打造你的专属中秋技术盛宴
python
梁萌22 分钟前
自动化测试框架playwright使用
自动化测试·python·ui自动化·playwright
Python×CATIA工业智造35 分钟前
Python回调函数中携带额外状态的完整指南:从基础到高级实践
python·pycharm
害恶细君38 分钟前
【超详细】使用conda配置python的开发环境
开发语言·python·jupyter·pycharm·conda·ipython
java1234_小锋42 分钟前
TensorFlow2 Python深度学习 - TensorFlow2框架入门 - 变量(Variable)的定义与操作
python·深度学习·tensorflow·tensorflow2
我星期八休息2 小时前
C++异常处理全面解析:从基础到应用
java·开发语言·c++·人工智能·python·架构
2401_841495642 小时前
【数据结构】汉诺塔问题
java·数据结构·c++·python·算法·递归·
CappuccinoRose2 小时前
MATLAB学习文档(二十三)
matlab·信息可视化·数据挖掘·数据分析
哈里谢顿3 小时前
Celery app 实例为何能在 beat、worker 等进程中“传递”?源码与机制详解
python
qq_402605653 小时前
python爬虫(二) ---- JS动态渲染数据抓取
javascript·爬虫·python