机器学习经典算法——线性回归

目录

算法介绍

一元线性回归模型

多元线性回归模型

误差项分析

相关系数

算法案例

一元线性回归预测------广告销售额案例

二元线性回归预测------血压收缩案例

多元线性回归预测------糖尿病案例


算法介绍

线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。

一元线性回归模型
多元线性回归模型
误差项分析
  • 误差项可以省略吗?

    误差项不可省略,误差是必然产生的。并且由于产生了误差项,我们便可以基于误差的特点来进行对线性回归的参数估计的。

  • 误差项有什么特点? 独立同分布。

  • 误差项满足高斯分布的原因?

    1. 数据样本偏离线性回归模型不会太远。

    2. 大部分都是在偏离一点点。

    3. 极少数的样本点会偏离比较远。

相关系数

又称皮尔逊相关系数,是研究变量之间相关关系的度量,一般用字母r表示。计算方式如下:

相关系数解释:

算法案例

一元线性回归预测------广告销售额案例

如图是广告投入与销售额的数据截图,请根据这份数据预测广告投入为35和40时的营业额分别是多少

python 复制代码
data=pd.read_csv("data.csv")
l=LinearRegression()
x=data[['广告投入']]
y=data[['销售额']]
l.fit(x,y)
result=l.predict(x)
score=l.score(x,y)
print('y={:.2f}x+{:.2f}'.format(l.coef_[0][0],l.intercept_[0]))
print(f"预测广告投入为35时销售额为:{l.predict([[35]])}")
print(f"预测广告投入为40时销售额为:{l.predict([[40]])}")
二元线性回归预测------血压收缩案例

如图是血压收缩的数据截图,请根据这份数据预测体重60,年龄为40的人,体重70,年龄为30这两人的血压收缩为

python 复制代码
data=pd.read_csv('血压收缩.csv',encoding='gbk',engine='python')
corr=data[['体重','年龄','血压收缩']].corr()
lr=LinearRegression()
x=data[['体重','年龄']]
y=data[['血压收缩']]
lr.fit(x,y)
score=lr.score(x,y)
print('y={:.2f}x1+{:.2f}x2+{:.2f}'.format(lr.coef_[0][0],lr.coef_[0][1],lr.intercept_[0]))
print(f"预测体重60,年龄为40的人的血压收缩为:{lr.predict([[60,40]])}")
print(f"预测体重70,年龄为30的人的血压收缩为:{lr.predict([[70,30]])}")
多元线性回归预测------糖尿病案例

如图是糖尿病的数据'糖尿病数据.csv'的部分截图,请根据这份数据求解糖尿病的线性回归方程

python 复制代码
data=pd.read_csv('糖尿病数据.csv',encoding='gbk',engine='python')
corr=data[['age','sex','bmi','bp','s1','s2','s3','s4','s5','s6','target']].corr()
lr=LinearRegression()
x=data[['age','sex','bmi','bp','s1','s2','s3','s4','s5','s6']]
y=data[['target']]
lr.fit(x,y)
score=lr.score(x,y)
print('y={:.2f}x1+{:.2f}x2+{:.2f}x3+{:.2f}x4+{:.2f}x5+{:.2f}x6+{:.2f}x7+{:.2f}x8+{:.2f}x9+{:.2f}'.format(lr.coef_[0][0],lr.coef_[0][1],lr.coef_[0][1],lr.coef_[0][2],lr.coef_[0][3],lr.coef_[0][4],lr.coef_[0][5],lr.coef_[0][6],lr.coef_[0][7],lr.coef_[0][8],lr.intercept_[0]))
相关推荐
wen__xvn1 小时前
每日一题洛谷P1914 小书童——凯撒密码c++
数据结构·c++·算法
lqqjuly1 小时前
人工智能驱动的自动驾驶:技术解析与发展趋势
人工智能·机器学习·自动驾驶
thinkMoreAndDoMore2 小时前
深度学习(2)-深度学习关键网络架构
人工智能·深度学习·机器学习
BUG 劝退师2 小时前
八大经典排序算法
数据结构·算法·排序算法
山海青风2 小时前
从零开始玩转TensorFlow:小明的机器学习故事 1
人工智能·机器学习·tensorflow
orion-orion2 小时前
学习理论:预测器-拒绝器多分类弃权学习
机器学习·统计学习·学习理论
B站计算机毕业设计超人2 小时前
计算机毕业设计hadoop+spark旅游景点推荐 旅游推荐系统 旅游可视化 旅游爬虫 景区客流量预测 旅游大数据 大数据毕业设计
大数据·hadoop·爬虫·深度学习·机器学习·数据可视化·推荐算法
m0_748240912 小时前
SpringMVC 请求参数接收
前端·javascript·算法
小林熬夜学编程2 小时前
【MySQL】第八弹---全面解析数据库表的增删改查操作:从创建到检索、排序与分页
linux·开发语言·数据库·mysql·算法
小小小白的编程日记2 小时前
List的基本功能(1)
数据结构·c++·算法·stl·list