pyspark执行group by操作

前情提要

在处理亿级别数据时,常常输入是hive表,因此需要在pypark流程中引入一些场景sql操作,其中group by就是比较常见的操作。

基础步骤

  1. 创建SparkSession:通过enableHiveSupport()方法启用Hive支持,确保能够访问Hive表。
  2. 加载数据:使用spark.sql()方法从Hive表中加载数据到DataFrame。
  3. 分组聚合操作:使用groupBy方法按field1和field2进行分组,并使用agg方法结合sum函数对field3进行求和操作。alias方法用于为聚合结果指定别名。
  4. 显示结果:使用show方法显示聚合结果。
  5. 停止SparkSession:最后停止SparkSession以释放资源。通常该步骤不需要,但是在例行化任务中,会偶发任务已执行完成,但是仍然占用资源情况,所以该步骤最好加上

代码展示

python 复制代码
from pyspark.sql import SparkSession
from pyspark.sql.functions import sum

# 创建SparkSession并启用Hive支持
spark = SparkSession.builder \
    .appName("GroupByExample") \
    .enableHiveSupport() \
    .getOrCreate()

# 假设已在Hive中创建了一个名为your_table_name的表
# 该表有字段: field1, field2, field3

# 从Hive表中加载数据
df = spark.sql("SELECT * FROM your_table_name")

# 使用groupBy和sum函数进行分组聚合操作
result_df = df.groupBy("field1", "field2").agg(sum("field3").alias("sum_field3"))

# 显示结果
result_df.show()

# 停止SparkSession
spark.stop()
相关推荐
百度Geek说4 小时前
搜索数据建设系列之数据架构重构
数据仓库·重构·架构·spark·dubbo
大数据CLUB12 小时前
基于spark的航班价格分析预测及可视化
大数据·hadoop·分布式·数据分析·spark·数据可视化
Cachel wood10 天前
Spark教程6:Spark 底层执行原理详解
大数据·数据库·分布式·计算机网络·spark
大数据CLUB10 天前
基于pyspark的北京历史天气数据分析及可视化_离线
大数据·hadoop·数据挖掘·数据分析·spark
Cachel wood10 天前
Spark教程1:Spark基础介绍
大数据·数据库·数据仓库·分布式·计算机网络·spark
张昕玥2023032211910 天前
Spark应用开发--WordCount实战
大数据·spark
阳光下是个孩子10 天前
基于 Spark 实现 COS 海量数据处理
大数据·分布式·spark
GawynKing10 天前
Apache SeaTunnel Spark引擎执行流程源码分析
spark·源码·seatunnel
heart000_111 天前
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
大数据·分布式·spark
254054652011 天前
710SJBH基于Apriori算法的学籍课程成绩关联规则挖掘研究
大数据·算法·spark