pyspark执行group by操作

前情提要

在处理亿级别数据时,常常输入是hive表,因此需要在pypark流程中引入一些场景sql操作,其中group by就是比较常见的操作。

基础步骤

  1. 创建SparkSession:通过enableHiveSupport()方法启用Hive支持,确保能够访问Hive表。
  2. 加载数据:使用spark.sql()方法从Hive表中加载数据到DataFrame。
  3. 分组聚合操作:使用groupBy方法按field1和field2进行分组,并使用agg方法结合sum函数对field3进行求和操作。alias方法用于为聚合结果指定别名。
  4. 显示结果:使用show方法显示聚合结果。
  5. 停止SparkSession:最后停止SparkSession以释放资源。通常该步骤不需要,但是在例行化任务中,会偶发任务已执行完成,但是仍然占用资源情况,所以该步骤最好加上

代码展示

python 复制代码
from pyspark.sql import SparkSession
from pyspark.sql.functions import sum

# 创建SparkSession并启用Hive支持
spark = SparkSession.builder \
    .appName("GroupByExample") \
    .enableHiveSupport() \
    .getOrCreate()

# 假设已在Hive中创建了一个名为your_table_name的表
# 该表有字段: field1, field2, field3

# 从Hive表中加载数据
df = spark.sql("SELECT * FROM your_table_name")

# 使用groupBy和sum函数进行分组聚合操作
result_df = df.groupBy("field1", "field2").agg(sum("field3").alias("sum_field3"))

# 显示结果
result_df.show()

# 停止SparkSession
spark.stop()
相关推荐
Jim-2ha010 小时前
【踩坑】SparkSQL union/unionAll 函数的去重问题
大数据·spark·scala
杰克逊的日记14 小时前
Spark的原理以及使用
大数据·分布式·spark
jiuweiC1 天前
spark环境搭建
spark
weixin_307779131 天前
AWS EMR基础知识
大数据·spark·云计算
jin_tmac2 天前
xgboost: Why not implement distributed XGBoost on top of spark
大数据·分布式·spark·xgboost
Apache Spark中国社区2 天前
Celeborn Spark 集成最新进展
大数据·分布式·spark
B站计算机毕业设计超人2 天前
计算机毕业设计Python+Vue.js游戏推荐系统 Steam游戏推荐系统 Django Flask 游 戏可视化 游戏数据分析 游戏大数据 爬虫
大数据·hadoop·算法·机器学习·spark·网络爬虫·数据可视化
flying robot2 天前
Hadoop、Flink、Spark和Kafka
hadoop·flink·spark
神秘打工猴2 天前
Spark和Mapreduce对比
大数据·spark·mapreduce