pyspark执行group by操作

前情提要

在处理亿级别数据时,常常输入是hive表,因此需要在pypark流程中引入一些场景sql操作,其中group by就是比较常见的操作。

基础步骤

  1. 创建SparkSession:通过enableHiveSupport()方法启用Hive支持,确保能够访问Hive表。
  2. 加载数据:使用spark.sql()方法从Hive表中加载数据到DataFrame。
  3. 分组聚合操作:使用groupBy方法按field1和field2进行分组,并使用agg方法结合sum函数对field3进行求和操作。alias方法用于为聚合结果指定别名。
  4. 显示结果:使用show方法显示聚合结果。
  5. 停止SparkSession:最后停止SparkSession以释放资源。通常该步骤不需要,但是在例行化任务中,会偶发任务已执行完成,但是仍然占用资源情况,所以该步骤最好加上

代码展示

python 复制代码
from pyspark.sql import SparkSession
from pyspark.sql.functions import sum

# 创建SparkSession并启用Hive支持
spark = SparkSession.builder \
    .appName("GroupByExample") \
    .enableHiveSupport() \
    .getOrCreate()

# 假设已在Hive中创建了一个名为your_table_name的表
# 该表有字段: field1, field2, field3

# 从Hive表中加载数据
df = spark.sql("SELECT * FROM your_table_name")

# 使用groupBy和sum函数进行分组聚合操作
result_df = df.groupBy("field1", "field2").agg(sum("field3").alias("sum_field3"))

# 显示结果
result_df.show()

# 停止SparkSession
spark.stop()
相关推荐
Just_Do_IT_OK6 小时前
Docker--Spark
docker·容器·spark
会编程的李较瘦6 小时前
【Spark学习】数据清洗
学习·ajax·spark
百度Geek说1 天前
百度大数据成本治理实践
hadoop·spark
梦里不知身是客112 天前
sparkSQL连接报错的一个解决方法
spark
源码之家2 天前
基于Python房价预测系统 数据分析 Flask框架 爬虫 随机森林回归预测模型、链家二手房 可视化大屏 大数据毕业设计(附源码)✅
大数据·爬虫·python·随机森林·数据分析·spark·flask
2501_941142642 天前
云计算与大数据:现代企业数字化转型的双引擎
spark
Saniffer_SH2 天前
通过近期测试简单聊一下究竟是直接选择Nvidia Spark还是4090/5090 GPU自建环境
大数据·服务器·图像处理·人工智能·驱动开发·spark·硬件工程
Q26433650232 天前
【有源码】基于Python的睡眠压力监测分析系统-基于Spark数据挖掘的睡眠压力动态可视化分析系统
大数据·hadoop·python·机器学习·数据挖掘·spark·课程设计
阳爱铭3 天前
ClickHouse 中至关重要的两类复制表引擎——ReplicatedMergeTree和 ReplicatedReplacingMergeTree
大数据·hive·hadoop·sql·clickhouse·spark·hbase
2501_941089193 天前
5G技术与物联网的融合:智能城市与工业革命的加速器
spark