【pytorch】现代循环神经网络-2

1 双向循环神经网络(Bi-RNN)

具有单个隐藏层的双向循环神经网络的架构如图所示:

对于任意时间步t,给定一个小批量的输入数据 Xt ∈ Rn×d (样本数n,每个示例中的输入数d),并且令隐藏层激活函数为ϕ。在双向架构中,我们设该时间步的前向和反向隐状态分别为 →Ht ∈ Rn×h和←Ht ∈ Rn×h,其中h是隐藏单元的数目。前向和反向隐状态的更新如下:

将前向隐状态→Ht 和反向隐状态←Ht连接起来,获得需要送入输出层的隐状态Ht ∈ Rn×2h。在具有多个隐藏层的深度双向循环神经网络中,该信息作为输入传递到下一个双向层。最后,输出层计算得到的输出为 Ot ∈ Rn×q(q是输出单元的数目):

双向循环神经网络的一个关键特性是:使用来自序列两端的信息来估计输出。也就是说,我们使用来自过去和未来的观测信息来预测当前的观测。存在问题如下:

(1)在训练期间,我们能够利用过去和未来的数据来估计现在空缺的词;而在测试期间,我们只有过去的数据,因此精度将会很差。

(2)双向循环神经网络的计算速度非常慢。其主要原因是网络的前向传播需要在双向层中进行前向和后向递归,并且网络的反向传播还依赖于前向传播的结果。因此,梯度求解将有一个非常长的链。

**双向层的使用在实践中非常少,并且仅仅应用于部分场合。**例如,填充缺失的单词、词元注释(例如,用于命名实体识别)以及作为序列处理流水线中的一个步骤对序列进行编码(例如,用于机器翻译)。

相关推荐
火山引擎开发者社区4 小时前
两大模型发布!豆包大模型日均使用量突破 50 万亿 Tokens
大数据·人工智能
小尘要自信4 小时前
Bright Data AI Scraper Studio:企业级AI爬虫解决方案,让数据采集更智能
人工智能·爬虫·通过ai自动化爬虫·prompt生产爬虫·云端爬虫平台
丝瓜蛋汤4 小时前
chunking-free RAG简介
人工智能·深度学习·机器学习
虹科汽车电子4 小时前
重新定义精密协作:低成本CAN FD如何赋予机器人「指尖智慧」?
人工智能·can总线·机器人灵巧手
王中阳Go5 小时前
09 Go Eino AI应用开发实战 | Hertz Web 框架搭建
人工智能·后端·go
智驱力人工智能5 小时前
从人海战术到智能巡逻 城市街道违规占道AI识别系统的实践与思考 占道经营检测系统价格 占道经营AI预警系统
人工智能·安全·yolo·目标检测·无人机·边缘计算
STLearner5 小时前
VLDB 2025 | 时间序列(Time Series)论文总结(预测,异常检测,压缩,自动化等)
数据库·人工智能·深度学习·神经网络·机器学习·数据挖掘·时序数据库
GEO-optimize5 小时前
2025年末GEO服务商推荐甄选:综合实力测评及优选指南
人工智能·搜索引擎·geo
Ven%5 小时前
【AI大模型算法工程师面试题解析与技术思考】
人工智能·python·算法
我很哇塞耶5 小时前
BOSS直聘3B超越Qwen3-32B,更多训练数据刷新小模型极限
人工智能·ai·大模型