【pytorch】现代循环神经网络-2

1 双向循环神经网络(Bi-RNN)

具有单个隐藏层的双向循环神经网络的架构如图所示:

对于任意时间步t,给定一个小批量的输入数据 Xt ∈ Rn×d (样本数n,每个示例中的输入数d),并且令隐藏层激活函数为ϕ。在双向架构中,我们设该时间步的前向和反向隐状态分别为 →Ht ∈ Rn×h和←Ht ∈ Rn×h,其中h是隐藏单元的数目。前向和反向隐状态的更新如下:

将前向隐状态→Ht 和反向隐状态←Ht连接起来,获得需要送入输出层的隐状态Ht ∈ Rn×2h。在具有多个隐藏层的深度双向循环神经网络中,该信息作为输入传递到下一个双向层。最后,输出层计算得到的输出为 Ot ∈ Rn×q(q是输出单元的数目):

双向循环神经网络的一个关键特性是:使用来自序列两端的信息来估计输出。也就是说,我们使用来自过去和未来的观测信息来预测当前的观测。存在问题如下:

(1)在训练期间,我们能够利用过去和未来的数据来估计现在空缺的词;而在测试期间,我们只有过去的数据,因此精度将会很差。

(2)双向循环神经网络的计算速度非常慢。其主要原因是网络的前向传播需要在双向层中进行前向和后向递归,并且网络的反向传播还依赖于前向传播的结果。因此,梯度求解将有一个非常长的链。

**双向层的使用在实践中非常少,并且仅仅应用于部分场合。**例如,填充缺失的单词、词元注释(例如,用于命名实体识别)以及作为序列处理流水线中的一个步骤对序列进行编码(例如,用于机器翻译)。

相关推荐
weisian15135 分钟前
进阶篇-8-数学篇-7--特征值与特征向量:AI特征提取的核心逻辑
人工智能·pca·特征值·特征向量·降维
Java程序员 拥抱ai38 分钟前
撰写「从0到1构建下一代游戏AI客服」系列技术博客的初衷
人工智能
186******2053141 分钟前
AI重构项目开发全流程:效率革命与实践指南
人工智能·重构
森之鸟1 小时前
多智能体系统开发入门:用鸿蒙实现设备间的AI协同决策
人工智能·harmonyos·m
铁蛋AI编程实战1 小时前
大模型本地轻量化微调+端侧部署实战(免高端GPU/16G PC可运行)
人工智能·架构·开源
铁蛋AI编程实战1 小时前
最新版 Kimi K2.5 完整使用教程:从入门到实战(开源部署+API接入+多模态核心功能)
人工智能·开源
我有医保我先冲1 小时前
AI 时代 “任务完成“ 与 “专业能力“ 的区分:理论基础、行业影响与个人发展策略
人工智能·python·机器学习
林深现海1 小时前
【刘二大人】PyTorch深度学习实践笔记 —— 第一集:深度学习全景概述(超详细版)
pytorch·笔记·深度学习
Bamtone20251 小时前
PCB切片分析新方案:Bamtone MS90集成AI的智能测量解决方案
人工智能
Warren2Lynch1 小时前
2026年专业软件工程与企业架构的智能化演进
人工智能·架构·软件工程