【pytorch】现代循环神经网络-2

1 双向循环神经网络(Bi-RNN)

具有单个隐藏层的双向循环神经网络的架构如图所示:

对于任意时间步t,给定一个小批量的输入数据 Xt ∈ Rn×d (样本数n,每个示例中的输入数d),并且令隐藏层激活函数为ϕ。在双向架构中,我们设该时间步的前向和反向隐状态分别为 →Ht ∈ Rn×h和←Ht ∈ Rn×h,其中h是隐藏单元的数目。前向和反向隐状态的更新如下:

将前向隐状态→Ht 和反向隐状态←Ht连接起来,获得需要送入输出层的隐状态Ht ∈ Rn×2h。在具有多个隐藏层的深度双向循环神经网络中,该信息作为输入传递到下一个双向层。最后,输出层计算得到的输出为 Ot ∈ Rn×q(q是输出单元的数目):

双向循环神经网络的一个关键特性是:使用来自序列两端的信息来估计输出。也就是说,我们使用来自过去和未来的观测信息来预测当前的观测。存在问题如下:

(1)在训练期间,我们能够利用过去和未来的数据来估计现在空缺的词;而在测试期间,我们只有过去的数据,因此精度将会很差。

(2)双向循环神经网络的计算速度非常慢。其主要原因是网络的前向传播需要在双向层中进行前向和后向递归,并且网络的反向传播还依赖于前向传播的结果。因此,梯度求解将有一个非常长的链。

**双向层的使用在实践中非常少,并且仅仅应用于部分场合。**例如,填充缺失的单词、词元注释(例如,用于命名实体识别)以及作为序列处理流水线中的一个步骤对序列进行编码(例如,用于机器翻译)。

相关推荐
中医正骨葛大夫9 分钟前
一文解决如何在Pycharm中创建cuda深度学习环境?
pytorch·深度学习·pycharm·软件安装·cuda·anaconda·配置环境
Vadaski10 分钟前
私有 Context 工程如何落地:从方法论到实战
人工智能·程序员
胖墩会武术12 分钟前
【OpenCV图像处理】深度学习:cv2.dnn() —— 图像分类、人脸检测、目标检测
图像处理·pytorch·python·opencv
刘国华-平价IT运维课堂18 分钟前
红帽企业Linux 10.1发布:AI命令行助手、量子安全加密和混合云创新
linux·运维·服务器·人工智能·云计算
Xiaok101818 分钟前
在 Jupyter Notebook 中启动 TensorBoard
人工智能·python·jupyter
亚马逊云开发者34 分钟前
相得益彰:Mem0 记忆框架与亚马逊云科技的企业级 AI 实践
人工智能
AAA修煤气灶刘哥43 分钟前
Y-Agent Studio :打破 DAG 的“无环”铁律?揭秘有向有环图如何让智能体真正“活”起来
人工智能·低代码·agent
WWZZ20251 小时前
快速上手大模型:深度学习9(池化层、卷积神经网络1)
人工智能·深度学习·神经网络·算法·机器人·大模型·具身智能
__如果1 小时前
Surgical Video Understanding LLM
人工智能
吴佳浩1 小时前
LangChain 入门指南:核心概念与理论框架
人工智能