pytorch张量高级索引介绍

PyTorch 中,张量索引操作可以使用高级索引(advanced indexing),其中索引可以是另一个张量。使用这种索引方式时,返回值的维度由索引张量的形状和原始张量的形状共同决定。以下是具体的规则和解释:

1. 基本概念

假设我们有一个张量 x 和索引张量 indices,我们通过 x[indices] 进行高级索引操作。

规则:

  • 索引张量的形状将决定返回值的形状。
  • 返回值的维度由索引张量的维度代替索引位置后的张量维度。

2. 示例讲解

示例 1:一维索引

复制代码
x = torch.tensor([[10, 20, 30], [40, 50, 60]])
indices = torch.tensor([0, 1])
result = x[indices]
  • x 的形状是 (2, 3)
  • indices 是一维张量,形状是 (2,)
  • 索引 x[indices] 的结果:
    • 取出 x 的第 0 行和第 1 行。
    • 返回值的形状是 (2, 3)

示例 2:多维索引

复制代码
x = torch.tensor([[10, 20, 30], [40, 50, 60]])
indices = torch.tensor([[0, 1], [1, 0]])
result = x[indices]

print(f"x.shape:{x.shape}")
print(f"index.shape:{index.shape}")
print(f"result.shape:{result.shape}")
print(result)

输出:

复制代码
x.shape:torch.Size([2, 3])
index.shape:torch.Size([2, 2])
result.shape:torch.Size([2, 2, 3])
tensor([[[10, 20, 30],
         [40, 50, 60]],

        [[40, 50, 60],
         [10, 20, 30]]])

示例 3:多维组合索引

复制代码
x = torch.tensor([[10, 20, 30], [40, 50, 60]])
rows = torch.tensor([0, 1])
cols = torch.tensor([1, 2])
result = x[rows, cols]
  • x 的形状是 (2, 3)
  • rowscols 都是一维张量,形状为 (2,)
  • 索引 x[rows, cols]
    • 分别取出 x[0, 1]x[1, 2]
    • 返回值是 (20, 60),形状为 (2,)

示例 4:广播索引

复制代码
x = torch.tensor([[10, 20, 30], [40, 50, 60]])
rows = torch.tensor([[0], [1]])
cols = torch.tensor([0, 2])
result = x[rows, cols]
  • x 的形状是 (2, 3)
  • rows 的形状是 (2, 1)cols 的形状是 (2,)
  • 索引 x[rows, cols]
    • rowscols 会广播成 (2, 2)
    • 返回值的形状是 (2, 2)

示例 5:更复杂的张量索引操作

AF3 AtomAttentionEncoder类的init_pair_repr方法解读-CSDN博客中的 张量的高级索引

总结:

  • 索引张量的形状直接决定了返回张量的形状。
  • 当多个索引张量时,它们会广播以匹配维度,然后返回广播后形状的张量。
相关推荐
数科云2 小时前
AI提示词(Prompt)入门:什么是Prompt?为什么要写好Prompt?
人工智能·aigc·ai写作·ai工具集·最新ai资讯
Devlive 开源社区2 小时前
技术日报|Claude Code超级能力库superpowers登顶日增1538星,自主AI循环ralph爆火登榜第二
人工智能
软件供应链安全指南3 小时前
灵脉 IAST 5.4 升级:双轮驱动 AI 漏洞治理与业务逻辑漏洞精准检测
人工智能·安全
lanmengyiyu3 小时前
单塔和双塔的区别和共同点
人工智能·双塔模型·网络结构·单塔模型
微光闪现3 小时前
AI识别宠物焦虑、紧张和晕车行为,是否已经具备实际可行性?
大数据·人工智能·宠物
技术小黑屋_3 小时前
用好Few-shot Prompting,AI 准确率提升100%
人工智能
中草药z3 小时前
【嵌入模型】概念、应用与两大 AI 开源社区(Hugging Face / 魔塔)
人工智能·算法·机器学习·数据集·向量·嵌入模型
web3.08889993 小时前
微店商品详情API实用
python·json·时序数据库
知乎的哥廷根数学学派4 小时前
基于数据驱动的自适应正交小波基优化算法(Python)
开发语言·网络·人工智能·pytorch·python·深度学习·算法
DisonTangor4 小时前
GLM-Image:面向密集知识与高保真图像生成的自回归模型
人工智能·ai作画·数据挖掘·回归·aigc