pytorch张量高级索引介绍

PyTorch 中,张量索引操作可以使用高级索引(advanced indexing),其中索引可以是另一个张量。使用这种索引方式时,返回值的维度由索引张量的形状和原始张量的形状共同决定。以下是具体的规则和解释:

1. 基本概念

假设我们有一个张量 x 和索引张量 indices,我们通过 x[indices] 进行高级索引操作。

规则:

  • 索引张量的形状将决定返回值的形状。
  • 返回值的维度由索引张量的维度代替索引位置后的张量维度。

2. 示例讲解

示例 1:一维索引

复制代码
x = torch.tensor([[10, 20, 30], [40, 50, 60]])
indices = torch.tensor([0, 1])
result = x[indices]
  • x 的形状是 (2, 3)
  • indices 是一维张量,形状是 (2,)
  • 索引 x[indices] 的结果:
    • 取出 x 的第 0 行和第 1 行。
    • 返回值的形状是 (2, 3)

示例 2:多维索引

复制代码
x = torch.tensor([[10, 20, 30], [40, 50, 60]])
indices = torch.tensor([[0, 1], [1, 0]])
result = x[indices]

print(f"x.shape:{x.shape}")
print(f"index.shape:{index.shape}")
print(f"result.shape:{result.shape}")
print(result)

输出:

复制代码
x.shape:torch.Size([2, 3])
index.shape:torch.Size([2, 2])
result.shape:torch.Size([2, 2, 3])
tensor([[[10, 20, 30],
         [40, 50, 60]],

        [[40, 50, 60],
         [10, 20, 30]]])

示例 3:多维组合索引

复制代码
x = torch.tensor([[10, 20, 30], [40, 50, 60]])
rows = torch.tensor([0, 1])
cols = torch.tensor([1, 2])
result = x[rows, cols]
  • x 的形状是 (2, 3)
  • rowscols 都是一维张量,形状为 (2,)
  • 索引 x[rows, cols]
    • 分别取出 x[0, 1]x[1, 2]
    • 返回值是 (20, 60),形状为 (2,)

示例 4:广播索引

复制代码
x = torch.tensor([[10, 20, 30], [40, 50, 60]])
rows = torch.tensor([[0], [1]])
cols = torch.tensor([0, 2])
result = x[rows, cols]
  • x 的形状是 (2, 3)
  • rows 的形状是 (2, 1)cols 的形状是 (2,)
  • 索引 x[rows, cols]
    • rowscols 会广播成 (2, 2)
    • 返回值的形状是 (2, 2)

示例 5:更复杂的张量索引操作

AF3 AtomAttentionEncoder类的init_pair_repr方法解读-CSDN博客中的 张量的高级索引

总结:

  • 索引张量的形状直接决定了返回张量的形状。
  • 当多个索引张量时,它们会广播以匹配维度,然后返回广播后形状的张量。
相关推荐
狮子座明仔12 小时前
Agent World Model:给智能体造一个“矩阵世界“——无限合成环境驱动的强化学习
人工智能·线性代数·语言模型·矩阵
OpenMiniServer12 小时前
AI 大模型的本质:基于大数据的拟合,而非创造
大数据·人工智能
SmartBrain12 小时前
FastAPI实战(第二部分):用户注册接口开发详解
数据库·人工智能·python·fastapi
星爷AG I12 小时前
12-6 心理理论(AGI基础理论)
人工智能·agi
向哆哆13 小时前
102类农业害虫图像识别数据集:智慧农业与精准防控的高质量资源
人工智能
lisw0513 小时前
云原生技术概述!
人工智能·机器学习·云原生
小程故事多_8013 小时前
深度解析个人AI助手OpenClaw:从消息处理到定时任务的全流程架构
人工智能·架构
开发者导航13 小时前
【开发者导航】多功能生成模型开发工具:Diffusers 详细介绍
人工智能·python·学习·macos·信息可视化
肾透侧视攻城狮13 小时前
《解锁TensorFlow模型潜力:超参数、网络结构、训练过程优化与高级技巧一站式精讲》
人工智能·深度学习·tensorflow 模型调优·静态/动态学习率·批量大小选择·宽/深度调整技巧·dropout/早停法
ん贤13 小时前
Scrapy 嵌入 FastAPI 的坑:Asyncio/Twisted 桥接 + 代理池设计
python·scrapy·fastapi