pytorch张量高级索引介绍

PyTorch 中,张量索引操作可以使用高级索引(advanced indexing),其中索引可以是另一个张量。使用这种索引方式时,返回值的维度由索引张量的形状和原始张量的形状共同决定。以下是具体的规则和解释:

1. 基本概念

假设我们有一个张量 x 和索引张量 indices,我们通过 x[indices] 进行高级索引操作。

规则:

  • 索引张量的形状将决定返回值的形状。
  • 返回值的维度由索引张量的维度代替索引位置后的张量维度。

2. 示例讲解

示例 1:一维索引

x = torch.tensor([[10, 20, 30], [40, 50, 60]])
indices = torch.tensor([0, 1])
result = x[indices]
  • x 的形状是 (2, 3)
  • indices 是一维张量,形状是 (2,)
  • 索引 x[indices] 的结果:
    • 取出 x 的第 0 行和第 1 行。
    • 返回值的形状是 (2, 3)

示例 2:多维索引

x = torch.tensor([[10, 20, 30], [40, 50, 60]])
indices = torch.tensor([[0, 1], [1, 0]])
result = x[indices]

print(f"x.shape:{x.shape}")
print(f"index.shape:{index.shape}")
print(f"result.shape:{result.shape}")
print(result)

输出:

x.shape:torch.Size([2, 3])
index.shape:torch.Size([2, 2])
result.shape:torch.Size([2, 2, 3])
tensor([[[10, 20, 30],
         [40, 50, 60]],

        [[40, 50, 60],
         [10, 20, 30]]])

示例 3:多维组合索引

x = torch.tensor([[10, 20, 30], [40, 50, 60]])
rows = torch.tensor([0, 1])
cols = torch.tensor([1, 2])
result = x[rows, cols]
  • x 的形状是 (2, 3)
  • rowscols 都是一维张量,形状为 (2,)
  • 索引 x[rows, cols]
    • 分别取出 x[0, 1]x[1, 2]
    • 返回值是 (20, 60),形状为 (2,)

示例 4:广播索引

x = torch.tensor([[10, 20, 30], [40, 50, 60]])
rows = torch.tensor([[0], [1]])
cols = torch.tensor([0, 2])
result = x[rows, cols]
  • x 的形状是 (2, 3)
  • rows 的形状是 (2, 1)cols 的形状是 (2,)
  • 索引 x[rows, cols]
    • rowscols 会广播成 (2, 2)
    • 返回值的形状是 (2, 2)

示例 5:更复杂的张量索引操作

AF3 AtomAttentionEncoder类的init_pair_repr方法解读-CSDN博客中的 张量的高级索引

总结:

  • 索引张量的形状直接决定了返回张量的形状。
  • 当多个索引张量时,它们会广播以匹配维度,然后返回广播后形状的张量。
相关推荐
西西弗Sisyphus17 分钟前
全面掌握Python时间处理
python·time
java1234_小锋2 小时前
一周学会Flask3 Python Web开发-http响应状态码
python·flask·flask3
Elastic 中国社区官方博客3 小时前
Elasticsearch 混合搜索 - Hybrid Search
大数据·人工智能·elasticsearch·搜索引擎·ai·语言模型·全文检索
@心都3 小时前
机器学习数学基础:29.t检验
人工智能·机器学习
9命怪猫3 小时前
DeepSeek底层揭秘——微调
人工智能·深度学习·神经网络·ai·大模型
奔跑吧邓邓子3 小时前
【Python爬虫(12)】正则表达式:Python爬虫的进阶利刃
爬虫·python·正则表达式·进阶·高级
码界筑梦坊4 小时前
基于Flask的京东商品信息可视化分析系统的设计与实现
大数据·python·信息可视化·flask·毕业设计
pianmian14 小时前
python绘图之箱型图
python·信息可视化·数据分析
csbDD4 小时前
2025年网络安全(黑客技术)三个月自学手册
linux·网络·python·安全·web安全
kcarly5 小时前
KTransformers如何通过内核级优化、多GPU并行策略和稀疏注意力等技术显著加速大语言模型的推理速度?
人工智能·语言模型·自然语言处理