pytorch张量高级索引介绍

PyTorch 中,张量索引操作可以使用高级索引(advanced indexing),其中索引可以是另一个张量。使用这种索引方式时,返回值的维度由索引张量的形状和原始张量的形状共同决定。以下是具体的规则和解释:

1. 基本概念

假设我们有一个张量 x 和索引张量 indices,我们通过 x[indices] 进行高级索引操作。

规则:

  • 索引张量的形状将决定返回值的形状。
  • 返回值的维度由索引张量的维度代替索引位置后的张量维度。

2. 示例讲解

示例 1:一维索引

复制代码
x = torch.tensor([[10, 20, 30], [40, 50, 60]])
indices = torch.tensor([0, 1])
result = x[indices]
  • x 的形状是 (2, 3)
  • indices 是一维张量,形状是 (2,)
  • 索引 x[indices] 的结果:
    • 取出 x 的第 0 行和第 1 行。
    • 返回值的形状是 (2, 3)

示例 2:多维索引

复制代码
x = torch.tensor([[10, 20, 30], [40, 50, 60]])
indices = torch.tensor([[0, 1], [1, 0]])
result = x[indices]

print(f"x.shape:{x.shape}")
print(f"index.shape:{index.shape}")
print(f"result.shape:{result.shape}")
print(result)

输出:

复制代码
x.shape:torch.Size([2, 3])
index.shape:torch.Size([2, 2])
result.shape:torch.Size([2, 2, 3])
tensor([[[10, 20, 30],
         [40, 50, 60]],

        [[40, 50, 60],
         [10, 20, 30]]])

示例 3:多维组合索引

复制代码
x = torch.tensor([[10, 20, 30], [40, 50, 60]])
rows = torch.tensor([0, 1])
cols = torch.tensor([1, 2])
result = x[rows, cols]
  • x 的形状是 (2, 3)
  • rowscols 都是一维张量,形状为 (2,)
  • 索引 x[rows, cols]
    • 分别取出 x[0, 1]x[1, 2]
    • 返回值是 (20, 60),形状为 (2,)

示例 4:广播索引

复制代码
x = torch.tensor([[10, 20, 30], [40, 50, 60]])
rows = torch.tensor([[0], [1]])
cols = torch.tensor([0, 2])
result = x[rows, cols]
  • x 的形状是 (2, 3)
  • rows 的形状是 (2, 1)cols 的形状是 (2,)
  • 索引 x[rows, cols]
    • rowscols 会广播成 (2, 2)
    • 返回值的形状是 (2, 2)

示例 5:更复杂的张量索引操作

AF3 AtomAttentionEncoder类的init_pair_repr方法解读-CSDN博客中的 张量的高级索引

总结:

  • 索引张量的形状直接决定了返回张量的形状。
  • 当多个索引张量时,它们会广播以匹配维度,然后返回广播后形状的张量。
相关推荐
亚里随笔16 分钟前
L0:让大模型成为通用智能体的强化学习新范式
人工智能·llm·大语言模型·rlhf
白杆杆红伞伞22 分钟前
T01_神经网络
人工智能·深度学习·神经网络
槑槑紫1 小时前
深度学习pytorch整体流程
人工智能·pytorch·深度学习
盼小辉丶1 小时前
TensorFlow深度学习实战——去噪自编码器详解与实现
人工智能·深度学习·tensorflow
胖达不服输1 小时前
「日拱一码」020 机器学习——数据处理
人工智能·python·机器学习·数据处理
吴佳浩1 小时前
Python入门指南-番外-LLM-Fingerprint(大语言模型指纹):从技术视角看AI开源生态的边界与挑战
python·llm·mcp
吴佳浩2 小时前
Python入门指南-AI模型相似性检测方法:技术原理与实现
人工智能·python·llm
叶 落2 小时前
计算阶梯电费
python·python 基础·python 入门
kebijuelun2 小时前
百度文心 4.5 大模型详解:ERNIE 4.5 Technical Report
人工智能·深度学习·百度·语言模型·自然语言处理·aigc
算家计算2 小时前
ComfyUI-v0.3.43本地部署教程:新增 Omnigen 2 支持,复杂图像任务一步到位!
人工智能·开源