什么是Kafka的重平衡机制?

Kafka 的重平衛机制是指在消费者组中新增或删除消费者时,Kafka 集群会重新分配主题分区给各个消费者,以保证每个消费者消费的分区数量尽可能均衡。

重平衡机制的目的是实现消费者的负载均衡和高可用性,以确保每个消费者都能够按照预期的方式消费到消息。


重平衡的 3 个触发条件

·消费者组成员数量发生变化。

·订阅主题数量发生变化。

·订阅主题的分区数发生变化。

当Kafka 集群要触发重平衡机制时,大致的步骤如下:

1.暂停消费:在重平衡开始之前,Kafka 会暂停所有消费者的拉取操作,以确保不会出现重平衡期间的消息丢失或重复消费。

2.计算分区分配方案:Kafka 集群会根据当前消费者组的消费者数量和主题分区数量,计算出每个消费者应该分配的分区列表,以实现分区的负载均衡。

3.通知消费者:一旦分区分配方案确定,Kafka 集群会将分配方案发送给每个消费者,告诉它们需要消费的分区列表,并请求它们重新加入消费者组。

4.重新分配分区:在消费者重新加入消费者组后,Kafka 集群会将分区分配方案应用到实际的分区分配中,重新分配主题分区给各个消费者。

5.恢复消费:最后,Kafka 会恢复所有消费者的拉取操作,允许它们消费分配给自己的分区。

Kafka 的重平衡机制能够有效地实现消费者的负载均衡和高可用性,提高消息的处理能力和可靠性。但是,由于重平衡会带来一定的性能开销和不确定性,因此在设计应用时需要考虑到重平衡的影响,并采取一些措施来降低重平後白勺频率率和景向。

在重平衡过程中,所有Consumer 实例都会停止消费,等待重平衡完成。但是目前并没有什么好的办法来解决重平衡带来的STW,只能尽量避免它的发生

相关推荐
优秀的颜1 小时前
计算机基础知识(第五篇)
java·开发语言·分布式
棠十一8 小时前
Rabbitmq
分布式·docker·rabbitmq
Lansonli9 小时前
大数据Spark(六十一):Spark基于Standalone提交任务流程
大数据·分布式·spark
Theodore_102210 小时前
大数据(2) 大数据处理架构Hadoop
大数据·服务器·hadoop·分布式·ubuntu·架构
Wo3Shi4七13 小时前
Kafka综合运用:怎么在实践中保证Kafka_高性能?
后端·kafka·消息队列
G探险者15 小时前
《深入理解 Nacos 集群与 Raft 协议》系列五:为什么集群未过半,系统就不可用?从 Raft 的投票机制说起
分布式·后端
G探险者15 小时前
《深入理解 Nacos 集群与 Raft 协议》系列一:为什么 Nacos 集群必须过半节点存活?从 Raft 协议说起
分布式·后端
G探险者15 小时前
《深入理解 Nacos 集群与 Raft 协议》系列四:日志复制机制:Raft 如何确保提交可靠且幂等
分布式·后端
G探险者15 小时前
《深入理解 Nacos 集群与 Raft 协议》系列三:日志对比机制:Raft 如何防止数据丢失与错误选主
分布式·后端
G探险者15 小时前
《深入理解 Nacos 集群与 Raft 协议》系列二:Raft 为什么要“选主”?选主的触发条件与机制详解
分布式·后端