Spark创建多种数据格式的DataFrame

假如我们要通过RDD[Row]创建一个包含多个列的DataFrame,重点是列的数据类型可能会包含多个,这时候需要有一点技巧。

| uid | user_name | age | income |

|:----|:----------|:----|:-------|

| 1111 | nituchao | 21 | 123.0 |

这个`DataFrame`里包含多个数据类型:

* uid: Long

* user_name: String

* age: Int

* income: Double

我们可以使用下面的方式来构建:

```scala

import org.apache.spark.sql.Row

import org.apache.spark.sql.types.{DoubleType, IntegerType, LongType, StringType, StructField, StructType}

val uidSeq = Seq(1111L)

val nameSeq = Seq("nituchao")

val ageSeq = Seq(21)

val incomeSeq = Seq(123.0)

val rowRDD = spark.sparkContext.parallelize(Seq(Row.fromSeq(uidSeq ++ userNameSeq ++ ageSeq ++ incomeSeq)))

val schema = StructType(Seq(StructField("uid", LongType, nullable = true),

StructField("name", StringType, nullable = true),

StructField("age", IntegerType, nullable = true),

StructField("sex", DoubleType, nullable = true)))

val df = spark.sqlContext.createDataFrame(rowRDD, schema)

df.printSchema()

df.show()

```

输出:

```shell

root

|-- uid: long (nullable = true)

|-- name: string (nullable = true)

|-- age: integer (nullable = true)

|-- sex: double (nullable = true)

+----+---------+---+-----+

| uid|name |age| sex|

+----+---------+---+-----+

|1111| nituchao| 21|123.0|

+----+---------+---+-----+

```

上面的技巧在于,使用`Row.fromSeq()`时,不同类型的数据,要用`Seq()`分别包起来然后`++`拼接后传进去。因为Seq中的元素必须是同类型的,如直接构造成一个Seq则会自动进行类型转换,多种类型数据不能混用。

问题不大,却造成很大困扰。

相关推荐
库库林_沙琪马15 分钟前
5、Seata
分布式·后端
lang2015092828 分钟前
Kafka副本同步机制核心解析
分布式·kafka·linq
写代码的【黑咖啡】38 分钟前
大数据建模中的模型
大数据
ljh5746491192 小时前
大数据geo是什么意思
大数据·人工智能
闲人编程2 小时前
环境配置管理与敏感信息保护
大数据·生命周期·环境配置·加密算法·codecapsule·敏感信息保护
珠海西格电力2 小时前
零碳园区应急能源基础架构规划:备用电源与清洁能源联动配置
大数据·运维·人工智能·物联网·能源
Elastic 中国社区官方博客2 小时前
开始使用 Elastic Agent Builder 和 Strands Agents SDK
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索
说私域2 小时前
不同类型企业构建私域流量的必要性及定制开发AI智能名片商城小程序的应用
大数据·人工智能·小程序
专业开发者2 小时前
蓝牙 ® 技术正逐步在未来的智慧城市中站稳脚跟。
大数据·人工智能·智慧城市
小技工丨2 小时前
【01】Apache Flink 2025年技术现状与发展趋势
大数据·flink·apache