Spark创建多种数据格式的DataFrame

假如我们要通过RDD[Row]创建一个包含多个列的DataFrame,重点是列的数据类型可能会包含多个,这时候需要有一点技巧。

| uid | user_name | age | income |

|:----|:----------|:----|:-------|

| 1111 | nituchao | 21 | 123.0 |

这个`DataFrame`里包含多个数据类型:

* uid: Long

* user_name: String

* age: Int

* income: Double

我们可以使用下面的方式来构建:

```scala

import org.apache.spark.sql.Row

import org.apache.spark.sql.types.{DoubleType, IntegerType, LongType, StringType, StructField, StructType}

val uidSeq = Seq(1111L)

val nameSeq = Seq("nituchao")

val ageSeq = Seq(21)

val incomeSeq = Seq(123.0)

val rowRDD = spark.sparkContext.parallelize(Seq(Row.fromSeq(uidSeq ++ userNameSeq ++ ageSeq ++ incomeSeq)))

val schema = StructType(Seq(StructField("uid", LongType, nullable = true),

StructField("name", StringType, nullable = true),

StructField("age", IntegerType, nullable = true),

StructField("sex", DoubleType, nullable = true)))

val df = spark.sqlContext.createDataFrame(rowRDD, schema)

df.printSchema()

df.show()

```

输出:

```shell

root

|-- uid: long (nullable = true)

|-- name: string (nullable = true)

|-- age: integer (nullable = true)

|-- sex: double (nullable = true)

+----+---------+---+-----+

| uid|name |age| sex|

+----+---------+---+-----+

|1111| nituchao| 21|123.0|

+----+---------+---+-----+

```

上面的技巧在于,使用`Row.fromSeq()`时,不同类型的数据,要用`Seq()`分别包起来然后`++`拼接后传进去。因为Seq中的元素必须是同类型的,如直接构造成一个Seq则会自动进行类型转换,多种类型数据不能混用。

问题不大,却造成很大困扰。

相关推荐
静听松涛133几秒前
门诊患者分诊引导流程图设计模板
大数据·论文阅读·人工智能·信息可视化·流程图·健康医疗
体育分享_大眼12 分钟前
足球API接口与篮球API接口核心数据体系及标准化接入全指南
大数据·人工智能
DianSan_ERP1 小时前
从数据到决策:京东接口如何驱动供应链数字化升级
大数据·运维·服务器·数据库·人工智能·性能优化·架构
min1811234561 小时前
AI从工具向自主决策者的身份转变
大数据·网络·人工智能·架构·流程图
~~李木子~~1 小时前
从“待整理”到“全库清单”:一套可自进化的本地书籍整理脚本实践
大数据·人工智能
人工干智能2 小时前
你知道 Pandas 中 `pd.get_dummies()` 会生成哪些独热的新列么?
大数据·pandas
aitoolhub2 小时前
自媒体视觉物料高效创作新路径:稿定设计如何用AI重构内容生产逻辑
大数据·人工智能·aigc·媒体
Guheyunyi2 小时前
智能巡检:技术融合与系统生成
大数据·人工智能·科技·安全·信息可视化