Spark创建多种数据格式的DataFrame

假如我们要通过RDD[Row]创建一个包含多个列的DataFrame,重点是列的数据类型可能会包含多个,这时候需要有一点技巧。

| uid | user_name | age | income |

|:----|:----------|:----|:-------|

| 1111 | nituchao | 21 | 123.0 |

这个`DataFrame`里包含多个数据类型:

* uid: Long

* user_name: String

* age: Int

* income: Double

我们可以使用下面的方式来构建:

```scala

import org.apache.spark.sql.Row

import org.apache.spark.sql.types.{DoubleType, IntegerType, LongType, StringType, StructField, StructType}

val uidSeq = Seq(1111L)

val nameSeq = Seq("nituchao")

val ageSeq = Seq(21)

val incomeSeq = Seq(123.0)

val rowRDD = spark.sparkContext.parallelize(Seq(Row.fromSeq(uidSeq ++ userNameSeq ++ ageSeq ++ incomeSeq)))

val schema = StructType(Seq(StructField("uid", LongType, nullable = true),

StructField("name", StringType, nullable = true),

StructField("age", IntegerType, nullable = true),

StructField("sex", DoubleType, nullable = true)))

val df = spark.sqlContext.createDataFrame(rowRDD, schema)

df.printSchema()

df.show()

```

输出:

```shell

root

|-- uid: long (nullable = true)

|-- name: string (nullable = true)

|-- age: integer (nullable = true)

|-- sex: double (nullable = true)

+----+---------+---+-----+

| uid|name |age| sex|

+----+---------+---+-----+

|1111| nituchao| 21|123.0|

+----+---------+---+-----+

```

上面的技巧在于,使用`Row.fromSeq()`时,不同类型的数据,要用`Seq()`分别包起来然后`++`拼接后传进去。因为Seq中的元素必须是同类型的,如直接构造成一个Seq则会自动进行类型转换,多种类型数据不能混用。

问题不大,却造成很大困扰。

相关推荐
代码匠心16 分钟前
从零开始学Flink:揭开实时计算的神秘面纱
java·大数据·后端·flink
归去_来兮2 小时前
图神经网络(GNN)模型的基本原理
大数据·人工智能·深度学习·图神经网络·gnn
Vesan,2 小时前
网络通讯知识——通讯分层介绍,gRPC,RabbitMQ分层
网络·分布式·rabbitmq·无人机
TDengine (老段)3 小时前
TDengine 支持的平台汇总
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
火龙谷3 小时前
【hadoop】相关集群开启命令
大数据·hadoop·分布式
livemetee5 小时前
一个完整的日志收集方案:Elasticsearch + Logstash + Kibana+Filebeat (二)
大数据·elk·搜索引擎
TDengine (老段)5 小时前
TDengine 开发指南——无模式写入
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
TDengine (老段)5 小时前
TDengine 在电力行业如何使用 AI ?
大数据·数据库·人工智能·时序数据库·tdengine·涛思数据
观无6 小时前
redis分布式锁
数据库·redis·分布式