SparkStreaming集群调优

一、调优

1、数据接收并行度调优

(1)多个Receiver接收Kafka的多个分区,并行地接收数据,进而提升吞吐量

(2)设置spark.streaming.blockInterval,默认是200ms推荐最小50ms,决定每个batch的RDD的分区数

(3)手工重新分区inputStream.repartition(<number of partitions>)

2、任务启动调优

(1)使用Kryo序列化机制来序列化task,可以减小task的大小,从而减少发送这些task到各个Worker节点上的Executor的时间

(2)在Standalone模式下运行Spark,可以达到更少的task启动时间

3、数据处理并行度调优

(1)很多操作都可以指定并行度,也可以调整缺省并行度spark.default.parallelism

4、数据序列化调优

(1)输入数据:默认情况下,接收到的输入数据,是存储在Executor的内存中的,使用的持久化级别是StorageLevel.MEMORY_AND_DISK_SER_2

(2)流式计算操作生成的持久化RDD:流式计算操作生成的RDD的默认持久化级别是StorageLevel.MEMORY_ONLY_SER

(3)使用Kryo时,一定要考虑注册自定义的类,并且禁用对应引用的tracking(spark.kryo.referenceTracking)

5、batch interval调优

(1)batch处理时间必须小于batch interval时间

(2)可以提高处理速度,或增大batch interval

6、内存

(1)如果想要使用一个窗口长度为10分钟的window操作,那么集群就必须有足够的内存来保存10分钟内的数据。

(2)如果想要使用updateStateByKey来维护许多key的state,那么你的内存资源就必须足够大。

(3)DStream的持久化

(4)清理旧数据

(5)CMS垃圾回收器:在spark-submit中使用--driver-java-options设置;使用spark.executor.extraJavaOptions参数设置。-XX:+UseConcMarkSweepGC

相关推荐
virtual_k1smet7 小时前
梧桐·鸿鹄- 大数据assistant-level
大数据·笔记
ggabb7 小时前
海南封关:锚定中国制造2025,破解产业转移生死局
大数据·人工智能
Blossom.1188 小时前
Prompt工程与思维链优化实战:从零构建动态Few-Shot与CoT推理引擎
人工智能·分布式·python·智能手机·django·prompt·边缘计算
aigcapi10 小时前
[深度观察] RAG 架构重塑流量分发:2025 年 GEO 优化技术路径与头部服务商选型指南
大数据·人工智能·架构
山峰哥10 小时前
SQL调优核心战法——索引失效场景与Explain深度解析
大数据·汇编·数据库·sql·编辑器·深度优先
hqyjzsb13 小时前
从爱好到专业:AI初学者如何跨越CAIE认证的理想与现实鸿沟
大数据·c语言·人工智能·信息可视化·职场和发展·excel·业界资讯
袋鼠云数栈13 小时前
企业数据资产管理核心框架:L1-L5分层架构解析
大数据·人工智能·架构
zxsz_com_cn13 小时前
设备预测性维护怎么做?预测性维护案例详解
大数据·人工智能
G皮T13 小时前
【Elasticsearch】查询性能调优(四):计数的精确性探讨
大数据·elasticsearch·搜索引擎·全文检索·es·性能·opensearch
十月南城13 小时前
ES性能与可用性——分片、副本、路由与聚合的调度逻辑与成本
大数据·elasticsearch·搜索引擎