SparkStreaming集群调优

一、调优

1、数据接收并行度调优

(1)多个Receiver接收Kafka的多个分区,并行地接收数据,进而提升吞吐量

(2)设置spark.streaming.blockInterval,默认是200ms推荐最小50ms,决定每个batch的RDD的分区数

(3)手工重新分区inputStream.repartition(<number of partitions>)

2、任务启动调优

(1)使用Kryo序列化机制来序列化task,可以减小task的大小,从而减少发送这些task到各个Worker节点上的Executor的时间

(2)在Standalone模式下运行Spark,可以达到更少的task启动时间

3、数据处理并行度调优

(1)很多操作都可以指定并行度,也可以调整缺省并行度spark.default.parallelism

4、数据序列化调优

(1)输入数据:默认情况下,接收到的输入数据,是存储在Executor的内存中的,使用的持久化级别是StorageLevel.MEMORY_AND_DISK_SER_2

(2)流式计算操作生成的持久化RDD:流式计算操作生成的RDD的默认持久化级别是StorageLevel.MEMORY_ONLY_SER

(3)使用Kryo时,一定要考虑注册自定义的类,并且禁用对应引用的tracking(spark.kryo.referenceTracking)

5、batch interval调优

(1)batch处理时间必须小于batch interval时间

(2)可以提高处理速度,或增大batch interval

6、内存

(1)如果想要使用一个窗口长度为10分钟的window操作,那么集群就必须有足够的内存来保存10分钟内的数据。

(2)如果想要使用updateStateByKey来维护许多key的state,那么你的内存资源就必须足够大。

(3)DStream的持久化

(4)清理旧数据

(5)CMS垃圾回收器:在spark-submit中使用--driver-java-options设置;使用spark.executor.extraJavaOptions参数设置。-XX:+UseConcMarkSweepGC

相关推荐
一只会写代码的猫4 小时前
可持续发展中的绿色科技:推动未来的环保创新
大数据·人工智能
沧海寄馀生4 小时前
Apache Hadoop生态组件部署分享-Hadoop
大数据·hadoop·分布式·apache
毕设源码-朱学姐4 小时前
【开题答辩全过程】以 基于Hadoop的豆瓣电影数据分析系统设计与实现为例,包含答辩的问题和答案
大数据·hadoop·分布式
原神启动15 小时前
云计算大数据——Nginx入门篇( Web 核心概念、HTTP/HTTPS协议 与 Nginx 安装)
大数据·http·云计算
喝养乐多长不高6 小时前
JAVA微服务脚手架项目详解(三)
java·大数据·微服务·文件·地图·oss
north_eagle6 小时前
MySQL 业务数据,报表方案
大数据·数据库
数据库学啊7 小时前
大数据场景下时序数据库选型指南:TDengine为什么凭借领先的技术和实践脱颖而出?
大数据·数据库·时序数据库·tdengine
ZePingPingZe7 小时前
分布式、Spring Boot微服务、垂直拆分、水平拆分、分库分表详解及关系梳理
分布式·架构
Mr_sun.8 小时前
Day08——ElasticSearch-基础
大数据·elasticsearch·jenkins
Elastic 中国社区官方博客8 小时前
在 Elasticsearch 中实现带可观测性的 agentic 搜索以自动调优相关性
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索