SparkStreaming集群调优

一、调优

1、数据接收并行度调优

(1)多个Receiver接收Kafka的多个分区,并行地接收数据,进而提升吞吐量

(2)设置spark.streaming.blockInterval,默认是200ms推荐最小50ms,决定每个batch的RDD的分区数

(3)手工重新分区inputStream.repartition(<number of partitions>)

2、任务启动调优

(1)使用Kryo序列化机制来序列化task,可以减小task的大小,从而减少发送这些task到各个Worker节点上的Executor的时间

(2)在Standalone模式下运行Spark,可以达到更少的task启动时间

3、数据处理并行度调优

(1)很多操作都可以指定并行度,也可以调整缺省并行度spark.default.parallelism

4、数据序列化调优

(1)输入数据:默认情况下,接收到的输入数据,是存储在Executor的内存中的,使用的持久化级别是StorageLevel.MEMORY_AND_DISK_SER_2

(2)流式计算操作生成的持久化RDD:流式计算操作生成的RDD的默认持久化级别是StorageLevel.MEMORY_ONLY_SER

(3)使用Kryo时,一定要考虑注册自定义的类,并且禁用对应引用的tracking(spark.kryo.referenceTracking)

5、batch interval调优

(1)batch处理时间必须小于batch interval时间

(2)可以提高处理速度,或增大batch interval

6、内存

(1)如果想要使用一个窗口长度为10分钟的window操作,那么集群就必须有足够的内存来保存10分钟内的数据。

(2)如果想要使用updateStateByKey来维护许多key的state,那么你的内存资源就必须足够大。

(3)DStream的持久化

(4)清理旧数据

(5)CMS垃圾回收器:在spark-submit中使用--driver-java-options设置;使用spark.executor.extraJavaOptions参数设置。-XX:+UseConcMarkSweepGC

相关推荐
数据猿9 小时前
【金猿CIO展】上海虹迪物流科技有限公司董事长兼CIO张鹏飞:聚焦数字化核心——物流供应链的的智慧演进之路
大数据·科技
deepdata_cn9 小时前
“深数据” vs “大数据”
大数据·bigdata·深数据·deepdata
数字化转型202512 小时前
SAP Signavio 在风机制造行业的深度应用研究
大数据·运维·人工智能
sheji341613 小时前
【开题答辩全过程】以 基于大数据的城市租房数据的分析与可视化为例,包含答辩的问题和答案
大数据
Augustvic13 小时前
消息队列Kafka
分布式·kafka
java1234_小锋15 小时前
Zookeeper分布式锁如何实现?
分布式·zookeeper·云原生
Biehmltym15 小时前
【AI】09AI Agent LLM → Streaming → Session 记录 的完整链路
大数据·人工智能·elasticsearch
Data-Miner16 小时前
精品PPT | 某制造集团灯塔工厂解决方案
大数据·人工智能·制造
小湘西16 小时前
Elasticsearch 的一些默认配置上下限
java·大数据·elasticsearch
`林中水滴`17 小时前
SeaTunnel vs Flume
大数据·flume