SparkStreaming集群调优

一、调优

1、数据接收并行度调优

(1)多个Receiver接收Kafka的多个分区,并行地接收数据,进而提升吞吐量

(2)设置spark.streaming.blockInterval,默认是200ms推荐最小50ms,决定每个batch的RDD的分区数

(3)手工重新分区inputStream.repartition(<number of partitions>)

2、任务启动调优

(1)使用Kryo序列化机制来序列化task,可以减小task的大小,从而减少发送这些task到各个Worker节点上的Executor的时间

(2)在Standalone模式下运行Spark,可以达到更少的task启动时间

3、数据处理并行度调优

(1)很多操作都可以指定并行度,也可以调整缺省并行度spark.default.parallelism

4、数据序列化调优

(1)输入数据:默认情况下,接收到的输入数据,是存储在Executor的内存中的,使用的持久化级别是StorageLevel.MEMORY_AND_DISK_SER_2

(2)流式计算操作生成的持久化RDD:流式计算操作生成的RDD的默认持久化级别是StorageLevel.MEMORY_ONLY_SER

(3)使用Kryo时,一定要考虑注册自定义的类,并且禁用对应引用的tracking(spark.kryo.referenceTracking)

5、batch interval调优

(1)batch处理时间必须小于batch interval时间

(2)可以提高处理速度,或增大batch interval

6、内存

(1)如果想要使用一个窗口长度为10分钟的window操作,那么集群就必须有足够的内存来保存10分钟内的数据。

(2)如果想要使用updateStateByKey来维护许多key的state,那么你的内存资源就必须足够大。

(3)DStream的持久化

(4)清理旧数据

(5)CMS垃圾回收器:在spark-submit中使用--driver-java-options设置;使用spark.executor.extraJavaOptions参数设置。-XX:+UseConcMarkSweepGC

相关推荐
IT毕设梦工厂13 分钟前
大数据毕业设计选题推荐-基于大数据的1688商品类目关系分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·毕业设计·源码·数据可视化·bigdata·选题推荐
君不见,青丝成雪21 分钟前
Hadoop技术栈(四)HIVE常用函数汇总
大数据·数据库·数据仓库·hive·sql
万邦科技Lafite29 分钟前
利用淘宝开放API接口监控商品状态,掌握第一信息
大数据·python·电商开放平台·开放api接口·淘宝开放平台
更深兼春远6 小时前
flink+clinkhouse安装部署
大数据·clickhouse·flink
Monly216 小时前
RabbitMQ:数据隔离
分布式·rabbitmq
专注API从业者9 小时前
Python + 淘宝 API 开发:自动化采集商品数据的完整流程
大数据·运维·前端·数据挖掘·自动化
萧鼎10 小时前
Python pyzmq 库详解:从入门到高性能分布式通信
开发语言·分布式·python
媒体人88810 小时前
GEO 优化专家孟庆涛:技术破壁者重构 AI 时代搜索逻辑
大数据·人工智能
最初的↘那颗心11 小时前
Flink Stream API 源码走读 - print()
java·大数据·hadoop·flink·实时计算
君不见,青丝成雪11 小时前
hadoop技术栈(九)Hbase替代方案
大数据·hadoop·hbase