SparkStreaming集群调优

一、调优

1、数据接收并行度调优

(1)多个Receiver接收Kafka的多个分区,并行地接收数据,进而提升吞吐量

(2)设置spark.streaming.blockInterval,默认是200ms推荐最小50ms,决定每个batch的RDD的分区数

(3)手工重新分区inputStream.repartition(<number of partitions>)

2、任务启动调优

(1)使用Kryo序列化机制来序列化task,可以减小task的大小,从而减少发送这些task到各个Worker节点上的Executor的时间

(2)在Standalone模式下运行Spark,可以达到更少的task启动时间

3、数据处理并行度调优

(1)很多操作都可以指定并行度,也可以调整缺省并行度spark.default.parallelism

4、数据序列化调优

(1)输入数据:默认情况下,接收到的输入数据,是存储在Executor的内存中的,使用的持久化级别是StorageLevel.MEMORY_AND_DISK_SER_2

(2)流式计算操作生成的持久化RDD:流式计算操作生成的RDD的默认持久化级别是StorageLevel.MEMORY_ONLY_SER

(3)使用Kryo时,一定要考虑注册自定义的类,并且禁用对应引用的tracking(spark.kryo.referenceTracking)

5、batch interval调优

(1)batch处理时间必须小于batch interval时间

(2)可以提高处理速度,或增大batch interval

6、内存

(1)如果想要使用一个窗口长度为10分钟的window操作,那么集群就必须有足够的内存来保存10分钟内的数据。

(2)如果想要使用updateStateByKey来维护许多key的state,那么你的内存资源就必须足够大。

(3)DStream的持久化

(4)清理旧数据

(5)CMS垃圾回收器:在spark-submit中使用--driver-java-options设置;使用spark.executor.extraJavaOptions参数设置。-XX:+UseConcMarkSweepGC

相关推荐
2401_8315017335 分钟前
Linux之Zabbix分布式监控篇(二)
数据库·分布式·zabbix
火火PM打怪中2 小时前
产品经理如何绘制服务蓝图(Service Blueprint)
大数据·产品经理
cui_win9 小时前
Kafka 配置参数详解:ZooKeeper 模式与 KRaft 模式对比
分布式·zookeeper·kafka
Elastic 中国社区官方博客10 小时前
在 Windows 上使用 Docker 运行 Elastic Open Crawler
大数据·windows·爬虫·elasticsearch·搜索引擎·docker·容器
一切顺势而行11 小时前
Flink cdc 使用总结
大数据·flink
liux352811 小时前
Zabbix 分布式监控系统架构设计与优化
分布式·zabbix
cui_win13 小时前
深入理解 Kafka 核心:主题、分区与副本的协同机制
网络·分布式·kafka
淦暴尼13 小时前
基于spark的二手房数据分析可视化系统
大数据·分布式·数据分析·spark
Ashlee_code14 小时前
裂变时刻:全球关税重构下的券商交易系统跃迁路线图(2025-2027)
java·大数据·数据结构·python·云原生·区块链·perl
Flink_China14 小时前
淘天AB实验分析平台Fluss落地实践:更适合实时OLAP的消息队列
大数据·flink