SparkStreaming集群调优

一、调优

1、数据接收并行度调优

(1)多个Receiver接收Kafka的多个分区,并行地接收数据,进而提升吞吐量

(2)设置spark.streaming.blockInterval,默认是200ms推荐最小50ms,决定每个batch的RDD的分区数

(3)手工重新分区inputStream.repartition(<number of partitions>)

2、任务启动调优

(1)使用Kryo序列化机制来序列化task,可以减小task的大小,从而减少发送这些task到各个Worker节点上的Executor的时间

(2)在Standalone模式下运行Spark,可以达到更少的task启动时间

3、数据处理并行度调优

(1)很多操作都可以指定并行度,也可以调整缺省并行度spark.default.parallelism

4、数据序列化调优

(1)输入数据:默认情况下,接收到的输入数据,是存储在Executor的内存中的,使用的持久化级别是StorageLevel.MEMORY_AND_DISK_SER_2

(2)流式计算操作生成的持久化RDD:流式计算操作生成的RDD的默认持久化级别是StorageLevel.MEMORY_ONLY_SER

(3)使用Kryo时,一定要考虑注册自定义的类,并且禁用对应引用的tracking(spark.kryo.referenceTracking)

5、batch interval调优

(1)batch处理时间必须小于batch interval时间

(2)可以提高处理速度,或增大batch interval

6、内存

(1)如果想要使用一个窗口长度为10分钟的window操作,那么集群就必须有足够的内存来保存10分钟内的数据。

(2)如果想要使用updateStateByKey来维护许多key的state,那么你的内存资源就必须足够大。

(3)DStream的持久化

(4)清理旧数据

(5)CMS垃圾回收器:在spark-submit中使用--driver-java-options设置;使用spark.executor.extraJavaOptions参数设置。-XX:+UseConcMarkSweepGC

相关推荐
司晓杰14 分钟前
Flink 实时数据处理中的问题与解决方案
大数据·flink
lisacumt15 分钟前
【Flink CDC】Flink CDC的Schema Evolution表结构演变的源码分析和流程图
大数据·flink·流程图
cmgdxrz3 小时前
性能测试05|JMeter:分布式、报告、并发数计算、性能监控
分布式·jmeter
孟秋与你3 小时前
【redisson】redisson分布式锁原理分析
java·分布式
Elastic 中国社区官方博客3 小时前
在不到 5 分钟的时间内将威胁情报 PDF 添加为 AI 助手的自定义知识
大数据·人工智能·安全·elasticsearch·搜索引擎·pdf·全文检索
玉成2263 小时前
Elasticsearch:索引mapping
大数据·elasticsearch·搜索引擎
小李不想输啦4 小时前
RabbitMQ端口操作
分布式·rabbitmq
运维&陈同学4 小时前
【Logstash01】企业级日志分析系统ELK之Logstash 安装与介绍
大数据·linux·elk·elasticsearch·云原生·自动化·logstash
todoitbo4 小时前
DockerCompose玩转Kafka单体与集群部署,Redpanda Console助力可视化管理
分布式·kafka·linq·redpanda·zookeeper集群·kafka集群
明达技术5 小时前
MR30分布式IO在火电厂区的广泛应用
分布式