SparkStreaming集群调优

一、调优

1、数据接收并行度调优

(1)多个Receiver接收Kafka的多个分区,并行地接收数据,进而提升吞吐量

(2)设置spark.streaming.blockInterval,默认是200ms推荐最小50ms,决定每个batch的RDD的分区数

(3)手工重新分区inputStream.repartition(<number of partitions>)

2、任务启动调优

(1)使用Kryo序列化机制来序列化task,可以减小task的大小,从而减少发送这些task到各个Worker节点上的Executor的时间

(2)在Standalone模式下运行Spark,可以达到更少的task启动时间

3、数据处理并行度调优

(1)很多操作都可以指定并行度,也可以调整缺省并行度spark.default.parallelism

4、数据序列化调优

(1)输入数据:默认情况下,接收到的输入数据,是存储在Executor的内存中的,使用的持久化级别是StorageLevel.MEMORY_AND_DISK_SER_2

(2)流式计算操作生成的持久化RDD:流式计算操作生成的RDD的默认持久化级别是StorageLevel.MEMORY_ONLY_SER

(3)使用Kryo时,一定要考虑注册自定义的类,并且禁用对应引用的tracking(spark.kryo.referenceTracking)

5、batch interval调优

(1)batch处理时间必须小于batch interval时间

(2)可以提高处理速度,或增大batch interval

6、内存

(1)如果想要使用一个窗口长度为10分钟的window操作,那么集群就必须有足够的内存来保存10分钟内的数据。

(2)如果想要使用updateStateByKey来维护许多key的state,那么你的内存资源就必须足够大。

(3)DStream的持久化

(4)清理旧数据

(5)CMS垃圾回收器:在spark-submit中使用--driver-java-options设置;使用spark.executor.extraJavaOptions参数设置。-XX:+UseConcMarkSweepGC

相关推荐
Zoey的笔记本18 分钟前
2026告别僵化工作流:支持自定义字段的看板工具选型与部署指南
大数据·前端·数据库
lingling0091 小时前
2026 年 BI 发展新趋势:AI 功能如何让数据分析工具 “思考” 和 “对话”?
大数据·人工智能·数据分析
鹧鸪云光伏1 小时前
光伏项目多,如何高效管理?
大数据·人工智能·光伏
Acrel187021067061 小时前
浅谈电气防火限流保护器设计在消防安全中的应用价值
大数据·网络
赵谨言1 小时前
Python串口的三相交流电机控制系统研究
大数据·开发语言·经验分享·python
汇智信科2 小时前
智慧矿山 & 工业大数据创新解决方案 —— 智能能源管理系统
大数据·能源·智慧矿山·工业大数据·汇智信科·智能能源管理系统·多元维度
企业对冲系统官2 小时前
基差风险管理系统日志分析功能的架构与实现
大数据·网络·数据库·算法·github·动态规划
忍冬行者4 小时前
Elasticsearch 超大日志流量集群搭建(网关 + 独立 Master + 独立 Data 纯生产架构,角色完全分离,百万级日志吞吐)
大数据·elasticsearch·云原生·架构·云计算
阿坤带你走近大数据4 小时前
如何解决农业数据的碎片化问题
大数据·人工智能·rag·大模型应用
资生算法程序员_畅想家_剑魔4 小时前
Java常见技术分享-分布式篇-分布式系统基础理论
java·开发语言·分布式