SparkStreaming集群调优

一、调优

1、数据接收并行度调优

(1)多个Receiver接收Kafka的多个分区,并行地接收数据,进而提升吞吐量

(2)设置spark.streaming.blockInterval,默认是200ms推荐最小50ms,决定每个batch的RDD的分区数

(3)手工重新分区inputStream.repartition(<number of partitions>)

2、任务启动调优

(1)使用Kryo序列化机制来序列化task,可以减小task的大小,从而减少发送这些task到各个Worker节点上的Executor的时间

(2)在Standalone模式下运行Spark,可以达到更少的task启动时间

3、数据处理并行度调优

(1)很多操作都可以指定并行度,也可以调整缺省并行度spark.default.parallelism

4、数据序列化调优

(1)输入数据:默认情况下,接收到的输入数据,是存储在Executor的内存中的,使用的持久化级别是StorageLevel.MEMORY_AND_DISK_SER_2

(2)流式计算操作生成的持久化RDD:流式计算操作生成的RDD的默认持久化级别是StorageLevel.MEMORY_ONLY_SER

(3)使用Kryo时,一定要考虑注册自定义的类,并且禁用对应引用的tracking(spark.kryo.referenceTracking)

5、batch interval调优

(1)batch处理时间必须小于batch interval时间

(2)可以提高处理速度,或增大batch interval

6、内存

(1)如果想要使用一个窗口长度为10分钟的window操作,那么集群就必须有足够的内存来保存10分钟内的数据。

(2)如果想要使用updateStateByKey来维护许多key的state,那么你的内存资源就必须足够大。

(3)DStream的持久化

(4)清理旧数据

(5)CMS垃圾回收器:在spark-submit中使用--driver-java-options设置;使用spark.executor.extraJavaOptions参数设置。-XX:+UseConcMarkSweepGC

相关推荐
safestar20123 分钟前
Elasticsearch与SelectDB的正面对决:日志分析场景的架构深度调优与选型指南
大数据·elasticsearch·架构
老蒋新思维1 小时前
创客匠人峰会复盘:AI 时代知识变现,从流量思维到共识驱动的系统重构
大数据·人工智能·tcp/ip·重构·创始人ip·创客匠人·知识变现
武子康2 小时前
Java-184 缓存实战:本地缓存 vs 分布式缓存(含 Guava/Redis 7.2)
java·redis·分布式·缓存·微服务·guava·本地缓存
ANYOLY8 小时前
分布式面试题库
分布式·面试·职场和发展
东哥说-MES|从入门到精通8 小时前
GenAI-生成式人工智能在工业制造中的应用
大数据·人工智能·智能制造·数字化·数字化转型·mes
万岳软件开发小城9 小时前
教育APP/小程序开发标准版图:课程、题库、直播、学习一站式梳理
大数据·php·uniapp·在线教育系统源码·教育app开发·教育软件开发
STLearner10 小时前
AI论文速读 | U-Cast:学习高维时间序列预测的层次结构
大数据·论文阅读·人工智能·深度学习·学习·机器学习·数据挖掘
数字化顾问10 小时前
(65页PPT)大型集团物料主数据管理系统建设规划方案(附下载方式)
大数据·运维·人工智能
老蒋新思维11 小时前
创客匠人 2025 全球创始人 IP+AI 万人高峰论坛:AI 赋能下知识变现与 IP 变现的实践沉淀与行业启示
大数据·人工智能·网络协议·tcp/ip·重构·创始人ip·创客匠人
河南博为智能科技有限公司12 小时前
高集成度国产八串口联网服务器:工业级多设备联网解决方案
大数据·运维·服务器·数据库·人工智能·物联网