SparkStreaming集群调优

一、调优

1、数据接收并行度调优

(1)多个Receiver接收Kafka的多个分区,并行地接收数据,进而提升吞吐量

(2)设置spark.streaming.blockInterval,默认是200ms推荐最小50ms,决定每个batch的RDD的分区数

(3)手工重新分区inputStream.repartition(<number of partitions>)

2、任务启动调优

(1)使用Kryo序列化机制来序列化task,可以减小task的大小,从而减少发送这些task到各个Worker节点上的Executor的时间

(2)在Standalone模式下运行Spark,可以达到更少的task启动时间

3、数据处理并行度调优

(1)很多操作都可以指定并行度,也可以调整缺省并行度spark.default.parallelism

4、数据序列化调优

(1)输入数据:默认情况下,接收到的输入数据,是存储在Executor的内存中的,使用的持久化级别是StorageLevel.MEMORY_AND_DISK_SER_2

(2)流式计算操作生成的持久化RDD:流式计算操作生成的RDD的默认持久化级别是StorageLevel.MEMORY_ONLY_SER

(3)使用Kryo时,一定要考虑注册自定义的类,并且禁用对应引用的tracking(spark.kryo.referenceTracking)

5、batch interval调优

(1)batch处理时间必须小于batch interval时间

(2)可以提高处理速度,或增大batch interval

6、内存

(1)如果想要使用一个窗口长度为10分钟的window操作,那么集群就必须有足够的内存来保存10分钟内的数据。

(2)如果想要使用updateStateByKey来维护许多key的state,那么你的内存资源就必须足够大。

(3)DStream的持久化

(4)清理旧数据

(5)CMS垃圾回收器:在spark-submit中使用--driver-java-options设置;使用spark.executor.extraJavaOptions参数设置。-XX:+UseConcMarkSweepGC

相关推荐
二二孚日1 分钟前
自用华为ICT云赛道Big Data第四章知识点-Flink流批一体分布式实时处理引擎
大数据·华为
掘金-我是哪吒14 分钟前
分布式微服务系统架构第158集:JavaPlus技术文档平台日更-JVM基础知识
jvm·分布式·微服务·架构·系统架构
东窗西篱梦1 小时前
Redis集群部署指南:高可用与分布式实践
数据库·redis·分布式
Acrel_Fanny1 小时前
Acrel-1000系列分布式光伏监控系统在湖北荆门一马光彩大市场屋顶光伏发电项目中应用
分布式
xufwind1 小时前
spark standlone 集群离线安装
大数据·分布式·spark
AI数据皮皮侠2 小时前
中国区域10m空间分辨率楼高数据集(全国/分省/分市/免费数据)
大数据·人工智能·机器学习·分类·业界资讯
半新半旧2 小时前
Redis集群和 zookeeper 实现分布式锁的优势和劣势
redis·分布式·zookeeper
亲爱的非洲野猪2 小时前
Kafka “假死“现象深度解析与解决方案
分布式·kafka
CodeWithMe2 小时前
【Note】《Kafka: The Definitive Guide》第三章: Kafka 生产者深入解析:如何高效写入 Kafka 消息队列
分布式·kafka
虾条_花吹雪2 小时前
2、Connecting to Kafka
分布式·ai·kafka