pytorch torch.scatter_reduce函数介绍

PyTorch torch.scatter_reduce 函数

torch.scatter_reduce 是 PyTorch 中的一种高级操作,用于在特定维度上将源张量的值按索引归约到目标张量中。它结合了 scatterreduce 操作,非常适合处理需要对特定索引进行归约(如求和、最大值等)的场景。


函数签名

复制代码
torch.scatter_reduce(input, dim, index, src, reduce, *, include_self=True, out=None)

参数说明

  1. input:

    • 目标张量,表示归约操作的初始值。
  2. dim:

    • 指定在目标张量 input 中进行归约操作的维度。
  3. index:

    • 张量,表示目标张量中归约操作的索引位置。
    • index 的形状必须与 src 兼容,或者可以广播成 src 的形状。
  4. src:

    • 源张量,提供要归约到 input 中的值。
  5. reduce:

    • 指定归约操作的类型,支持以下选项:
      • "sum":按索引进行求和。
      • "prod":按索引进行乘积。
      • "mean":按索引计算平均值。
      • "amax":按索引取最大值。
      • "amin":按索引取最小值。
  6. include_self (可选, 默认 True):

    • 是否在归约时包括 input 中的原始值。
    • 如果为 False,只使用 src 中的值进行归约。
  7. out (可选):

    • 用于存储结果的张量。如果提供,将直接修改此张量。

返回值

返回一个张量,包含归约操作的结果,形状与 input 相同。


示例

1. 按索引求和 (reduce="sum")
复制代码
import torch

input = torch.zeros(3, 5)
index = torch.tensor([[0, 1, 2, 0, 1],
                      [1, 2, 0, 1, 2]])
src = torch.tensor([[10., 20., 30., 40., 50.],
                    [1., 2., 3., 4., 5.]])

result = torch.scatter_reduce(input, dim=1, index=index, src=src, reduce="sum")
print(result)

输出

复制代码
tensor([[50., 70., 30.,  0.,  0.],
        [ 3.,  5.,  7.,  0.,  0.],
        [ 0.,  0.,  0.,  0.,  0.]])
2. 按索引取最大值 (reduce="amax")
复制代码
result = torch.scatter_reduce(input, dim=1, index=index, src=src, reduce="amax")
print(result)

输出

复制代码
tensor([[40., 50., 30.,  0.,  0.],
        [ 3.,  4.,  5.,  0.,  0.],
        [ 0.,  0.,  0.,  0.,  0.]])
3. 使用 include_self=False
复制代码
result = torch.scatter_reduce(input, dim=1, index=index, src=src, reduce="sum", include_self=False)
print(result)

输出:

复制代码
tensor([[50., 70., 30.,  0.,  0.],
        [ 3.,  5.,  7.,  0.,  0.],
        [ 0.,  0.,  0.,  0.,  0.]])

注意事项

  1. index 范围

    • index 的值必须在 [0, input.shape[dim]) 范围内,否则会引发错误。
  2. 广播规则

    • indexsrc 必须具有相同的形状,或者可以通过广播匹配。
  3. 性能优化

    • torch.scatter_reduce 对于稀疏更新和归约非常高效,避免了循环操作。

应用场景

  • 聚合数据(如按索引分组求和或求最大值)。
  • 构造稀疏张量。
  • 实现自定义的归约操作(如图神经网络中的消息传递)。
相关推荐
朝日六六花_LOCK13 分钟前
深度学习之NLP基础
人工智能·深度学习·自然语言处理
weixin_5824701737 分钟前
GS-IR:3D 高斯喷溅用于逆向渲染
人工智能·算法
GetcharZp2 小时前
玩转AI绘画,你只差一个节点式“魔法”工具——ComfyUI 保姆级入门指南
人工智能·stable diffusion
集成显卡2 小时前
使用 Google 开源 AI 工具 LangExtract 进行结构化信息抽取
python·google·openai
久笙&2 小时前
对象存储解决方案:MinIO 的架构与代码实战
数据库·python·架构
一休哥助手2 小时前
Naive RAG:简单而高效的检索增强生成架构解析与实践指南
运维·人工智能·架构
不甘懦弱2 小时前
阿里云搭建flask服务器
服务器·python·flask
机器之心2 小时前
究竟会花落谁家?DeepSeek最新大模型瞄准了下一代国产AI芯片
人工智能·openai
赵英英俊2 小时前
Python day51
人工智能·pytorch·python
双向332 小时前
金融风控AI引擎:实时反欺诈系统的架构设计与实现
人工智能