OpenCV计算机视觉 07 图像的模块匹配

在做目标检测、图像识别时,我们经常用到模板匹配,以确定模板在输入图像中的可能位置

API函数

python 复制代码
cv2.matchTemplate(image, templ, method, result=None, mask=None)

参数含义:

image:待搜索图像

templ:模板图像

method:计算匹配程度的方法,可以有:

TM_SQDIFF 平方差匹配法:该方法采用平方差来进行匹配;匹配越好,值越小;匹配越差,值越大。

TM_CCORR 相关匹配法:该方法采用乘法操作;数值越大表明匹配程度越好。 TM_CCOEFF 相关系数匹配法:数值越大表明匹配程度越好。

TM_SQDIFF_NORMED 归一化平方差匹配法,匹配越好,值越小;匹配越差,值越大。

TM_CCORR_NORMED 归一化相关匹配法,数值越大表明匹配程度越好。

-> TM_CCOEFF_NORMED 归一化相关系数匹配法,数值越大表明匹配程度越好。

比如我要在可口可乐瓶中匹配出如下的可口可乐商标,这么做呢

可口可乐瓶:

要匹配的商标:

python 复制代码
import cv2
# 读取名为'cola.png'的图像作为原图
kele = cv2.imread('cola.png')  
# 读取名为'co_t.png'的图像作为模板
template = cv2.imread('template.png')  
​
cv2.imshow('kele', kele)  # 显示原图
cv2.imshow('c', template)  # 显示模板
cv2.waitKey(0)  # 等待按键
​
h, w = template.shape[:2]  # 获取模板的高度和宽度
# 在原图中匹配模板
res = cv2.matchTemplate(kele, template, cv2.TM_CCOEFF_NORMED)
# 获取匹配结果中的最小值、最大值及对应的位置
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)  
top_left = max_loc  # 最大匹配值的位置作为矩形的左上角
# 计算矩形的右下角
bottom_right = (top_left[0] + w, top_left[1] + h)  
# 在原图上绘制矩形
kele_template = cv2.rectangle(kele, top_left, bottom_right, (0, 255, 0), 2)  
cv2.imshow('k', kele_template)  # 显示绘制了矩形的原图
cv2.waitKey(0)  # 等待按键

输出:

相关推荐
F_D_Z3 小时前
计算机视觉的四项基本任务辨析
人工智能·计算机视觉
LetsonH3 小时前
⭐CVPR2025 MatAnyone:稳定且精细的视频抠图新框架
人工智能·python·深度学习·计算机视觉·音视频
格林威4 小时前
Baumer相机如何通过YoloV8深度学习模型实现工厂自动化产线牛奶瓶盖实时装配的检测识别(C#代码UI界面版)
人工智能·深度学习·数码相机·yolo·机器学习·计算机视觉·c#
2501_924731996 小时前
智慧能源场景设备缺陷漏检率↓76%:陌讯多模态融合检测方案实战解析
大数据·人工智能·算法·目标检测·计算机视觉·视觉检测
白葵新6 小时前
C#案例实战
c++·python·算法·计算机视觉·c#
这张生成的图像能检测吗7 小时前
(论文速读)探索多模式大型语言模型的视觉缺陷
人工智能·深度学习·算法·计算机视觉·语言模型·自然语言处理
小蜜蜂爱编程8 小时前
opencv 阈值分割函数
人工智能·opencv·计算机视觉
海绵波波1078 小时前
基于OpenCV的cv2.solvePnP方法实现头部姿态估计
人工智能·opencv·算法
fengfuyao9858 小时前
MATLAB实现的基于压缩感知的图像处理
图像处理·计算机视觉·matlab
bright_colo9 小时前
Python-初学openCV——图像预处理(七)——亮度变换、形态学变换
人工智能·opencv·计算机视觉