OpenCV计算机视觉 07 图像的模块匹配

在做目标检测、图像识别时,我们经常用到模板匹配,以确定模板在输入图像中的可能位置

API函数

python 复制代码
cv2.matchTemplate(image, templ, method, result=None, mask=None)

参数含义:

image:待搜索图像

templ:模板图像

method:计算匹配程度的方法,可以有:

TM_SQDIFF 平方差匹配法:该方法采用平方差来进行匹配;匹配越好,值越小;匹配越差,值越大。

TM_CCORR 相关匹配法:该方法采用乘法操作;数值越大表明匹配程度越好。 TM_CCOEFF 相关系数匹配法:数值越大表明匹配程度越好。

TM_SQDIFF_NORMED 归一化平方差匹配法,匹配越好,值越小;匹配越差,值越大。

TM_CCORR_NORMED 归一化相关匹配法,数值越大表明匹配程度越好。

-> TM_CCOEFF_NORMED 归一化相关系数匹配法,数值越大表明匹配程度越好。

比如我要在可口可乐瓶中匹配出如下的可口可乐商标,这么做呢

可口可乐瓶:

要匹配的商标:

python 复制代码
import cv2
# 读取名为'cola.png'的图像作为原图
kele = cv2.imread('cola.png')  
# 读取名为'co_t.png'的图像作为模板
template = cv2.imread('template.png')  
​
cv2.imshow('kele', kele)  # 显示原图
cv2.imshow('c', template)  # 显示模板
cv2.waitKey(0)  # 等待按键
​
h, w = template.shape[:2]  # 获取模板的高度和宽度
# 在原图中匹配模板
res = cv2.matchTemplate(kele, template, cv2.TM_CCOEFF_NORMED)
# 获取匹配结果中的最小值、最大值及对应的位置
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)  
top_left = max_loc  # 最大匹配值的位置作为矩形的左上角
# 计算矩形的右下角
bottom_right = (top_left[0] + w, top_left[1] + h)  
# 在原图上绘制矩形
kele_template = cv2.rectangle(kele, top_left, bottom_right, (0, 255, 0), 2)  
cv2.imshow('k', kele_template)  # 显示绘制了矩形的原图
cv2.waitKey(0)  # 等待按键

输出:

相关推荐
硅谷秋水2 小时前
多智体机器人系统(MARS)挑战的进展与创新
深度学习·机器学习·计算机视觉·语言模型·机器人·人机交互
思通数科人工智能大模型3 小时前
电力巡检无人机和工程车“空地一体”AI全域巡检方案
人工智能·目标检测·计算机视觉·数据挖掘·无人机·知识图谱·零售
AomanHao9 小时前
【ISP】基于暗通道先验改进的红外图像透雾
图像处理·人工智能·算法·计算机视觉·图像增强·红外图像
开开心心就好11 小时前
轻松鼠标连, 自定义区域模仿人手点击
人工智能·windows·物联网·计算机视觉·计算机外设·ocr·excel
啊阿狸不会拉杆13 小时前
《计算机视觉:模型、学习和推理》第 1 章 - 绪论
人工智能·python·学习·算法·机器学习·计算机视觉·模型
啊阿狸不会拉杆14 小时前
《计算机视觉:模型、学习和推理》第 2 章-概率概述
人工智能·python·学习·算法·机器学习·计算机视觉·ai
沃达德软件1 天前
视频增强技术解析
人工智能·目标检测·机器学习·计算机视觉·超分辨率重建
冰西瓜6001 天前
深度学习的数学原理(十)—— 权重如何自发分工
人工智能·深度学习·计算机视觉
Testopia2 天前
人脸检测:OpenVINO在计算机视觉中的应用
人工智能·计算机视觉·openvino
Katecat996632 天前
基于YOLO11-EfficientViT的辉长岩及其相关岩石类型计算机视觉识别分类系统_1
人工智能·计算机视觉·分类