OpenCV计算机视觉 07 图像的模块匹配

在做目标检测、图像识别时,我们经常用到模板匹配,以确定模板在输入图像中的可能位置

API函数

python 复制代码
cv2.matchTemplate(image, templ, method, result=None, mask=None)

参数含义:

image:待搜索图像

templ:模板图像

method:计算匹配程度的方法,可以有:

TM_SQDIFF 平方差匹配法:该方法采用平方差来进行匹配;匹配越好,值越小;匹配越差,值越大。

TM_CCORR 相关匹配法:该方法采用乘法操作;数值越大表明匹配程度越好。 TM_CCOEFF 相关系数匹配法:数值越大表明匹配程度越好。

TM_SQDIFF_NORMED 归一化平方差匹配法,匹配越好,值越小;匹配越差,值越大。

TM_CCORR_NORMED 归一化相关匹配法,数值越大表明匹配程度越好。

-> TM_CCOEFF_NORMED 归一化相关系数匹配法,数值越大表明匹配程度越好。

比如我要在可口可乐瓶中匹配出如下的可口可乐商标,这么做呢

可口可乐瓶:

要匹配的商标:

python 复制代码
import cv2
# 读取名为'cola.png'的图像作为原图
kele = cv2.imread('cola.png')  
# 读取名为'co_t.png'的图像作为模板
template = cv2.imread('template.png')  
​
cv2.imshow('kele', kele)  # 显示原图
cv2.imshow('c', template)  # 显示模板
cv2.waitKey(0)  # 等待按键
​
h, w = template.shape[:2]  # 获取模板的高度和宽度
# 在原图中匹配模板
res = cv2.matchTemplate(kele, template, cv2.TM_CCOEFF_NORMED)
# 获取匹配结果中的最小值、最大值及对应的位置
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)  
top_left = max_loc  # 最大匹配值的位置作为矩形的左上角
# 计算矩形的右下角
bottom_right = (top_left[0] + w, top_left[1] + h)  
# 在原图上绘制矩形
kele_template = cv2.rectangle(kele, top_left, bottom_right, (0, 255, 0), 2)  
cv2.imshow('k', kele_template)  # 显示绘制了矩形的原图
cv2.waitKey(0)  # 等待按键

输出:

相关推荐
Ronin-Lotus2 小时前
图像处理篇---基本Python图像处理
图像处理·人工智能·python·opencv·计算机视觉
我们的五年2 小时前
DeepSeek与蓝耘智算平台:人工智能与高效算力的协同革命
人工智能·opencv·蓝耘
冀辉2 小时前
半小时在本地部署DeepSeek的Janus Pro,进行图片分析和文生图
人工智能·计算机视觉
pchmi3 小时前
C# OpenCV机器视觉:SoftNMS非极大值抑制
人工智能·opencv·c#·机器视觉·opencvsharp
万事可爱^10 小时前
【深度学习】突破数据局限:少样本图像数据的特征提取实战攻略
图像处理·人工智能·深度学习·神经网络·计算机视觉
向阳逐梦11 小时前
从基础到人脸识别与目标检测
人工智能·目标检测·计算机视觉
小张贼嚣张13 小时前
计算机视觉的研究方向、发展历程、发展前景介绍
人工智能·计算机视觉
飞瀑13 小时前
探头特征点创建
人工智能·opencv·计算机视觉
BugNest17 小时前
图像处理技术和应用
图像处理·人工智能·深度学习·机器学习·计算机视觉·ai
goomind20 小时前
深度卷积神经网络实战海洋动物图像识别
深度学习·神经网络·yolo·计算机视觉·cnn·pyqt5·海洋动物识别