grouped.get_group((‘B‘, ‘A‘))选择分组

1. df.groupby(['team', df.name.str[0]])

  • df.groupby(['team', df.name.str[0]]) 这一部分代码表示对 DataFrame df 按照 两个条件 进行分组:

    • 按照 'team' 列(即团队)。
    • 按照 'name' 列的 首字母df.name.str[0])。
  • df.name.str[0] 使用了 str 访问器和 .str[0] 索引来获取 'name' 列中每个名字的首字母。例如,如果某个名字是 "Alice",那么 df.name.str[0] 就会返回 'A'

  • 因此,分组后的结果是按团队(team)和每个人姓名的首字母进行二重分组。

2. grouped2.get_group(('B', 'A'))

  • grouped2.get_group(('B', 'A')) 表示从已经按 teamname 首字母分组的结果中,选出 teamB 且姓名首字母为 A 的组。
  • get_group(('B', 'A')) 方法返回的是符合条件的组的 DataFrame 数据。

示例:

假设你有如下的 DataFrame df

python 复制代码
import pandas as pd

# 创建一个示例 DataFrame
data = {
    'name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'],
    'team': ['A', 'B', 'A', 'B', 'A'],
    'score': [90, 80, 85, 95, 88]
}
df = pd.DataFrame(data)

print(df)

输出:

      name team  score
0    Alice    A     90
1      Bob    B     80
2  Charlie    A     85
3    David    B     95
4      Eva    A     88

执行 grouped2 = df.groupby(['team', df.name.str[0]])

python 复制代码
grouped2 = df.groupby(['team', df.name.str[0]])

这将按照 team 和姓名首字母进行分组,得到一个分组对象。现在,grouped2 是一个包含多个组的 GroupBy 对象。

执行 grouped2.get_group(('B', 'A'))

python 复制代码
grouped2.get_group(('B', 'A'))

这行代码会选出 teamB 且姓名首字母为 A 的分组。输出将是:

    name team  score
1    Bob    B     80

解释:

  • teamB 且姓名首字母为 A 的数据只有 Bob,因此返回的结果是一个 DataFrame,其中只包含 Bob 这一行数据。

完整代码

python 复制代码
import pandas as pd

# 创建一个示例 DataFrame
data = {
    'name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'],
    'team': ['A', 'B', 'A', 'B', 'A'],
    'score': [90, 80, 85, 95, 88]
}
df = pd.DataFrame(data)

print(df)

grouped2 = df.groupby(['team', df.name.str[0].str.upper()])  # 确保首字母是大写
print(grouped2.groups)

grouped2.get_group(('B', 'B'))

输出:

总结:

  • df.groupby(['team', df.name.str[0]]) :按团队 (team) 和姓名的首字母 (df.name.str[0]) 进行二重分组。
  • get_group(('B', 'A')) :获取 teamB 且姓名首字母为 A 的分组数据。在本例中,只有 Bob 这一行符合条件,因此返回该行数据。

这种方法非常有用,可以实现更复杂的分组,比如按某一列的部分值(如首字母、日期的月或周等)进行分组。

补充:

分组对象的groups方法会生成一个字典(其实是Pandas定义的PrettyDict),这个字典包含分组的名称和分组的内容索引列表,然后我们可以使用字典的.keys()方法取出分组名称:

python 复制代码
import pandas as pd

# 创建一个示例 DataFrame
data = {
    'name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'],
    'team': ['A', 'B', 'A', 'B', 'A'],
    'score': [90, 80, 85, 95, 88]
}
df = pd.DataFrame(data)

print(df,'\n')
grouped = df.drop('name', axis=1).groupby('team')
result = grouped.sum()
print(result,'\n')
print(df.groupby('team').groups,'\n')
print(df.groupby('team').groups.keys(),'\n')

输出:

相关推荐
久绊A1 小时前
Python 基本语法的详细解释
开发语言·windows·python
Hylan_J4 小时前
【VSCode】MicroPython环境配置
ide·vscode·python·编辑器
莫忘初心丶4 小时前
在 Ubuntu 22 上使用 Gunicorn 启动 Flask 应用程序
python·ubuntu·flask·gunicorn
失败尽常态5237 小时前
用Python实现Excel数据同步到飞书文档
python·excel·飞书
2501_904447747 小时前
OPPO发布新型折叠屏手机 起售价8999
python·智能手机·django·virtualenv·pygame
青龙小码农7 小时前
yum报错:bash: /usr/bin/yum: /usr/bin/python: 坏的解释器:没有那个文件或目录
开发语言·python·bash·liunx
大数据追光猿7 小时前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法
Leuanghing8 小时前
【Leetcode】11. 盛最多水的容器
python·算法·leetcode
xinxiyinhe9 小时前
如何设置Cursor中.cursorrules文件
人工智能·python
诸神缄默不语9 小时前
如何用Python 3自动打开exe程序
python·os·subprocess·python 3