【LeetCode】4. 去重的效率提升

看一道简单题

初始做法

python 复制代码
class Solution:
    def removeDuplicates(self, nums: List[int]) -> int:
        hashMap = []
        k = 0

        for i in nums:
            if i not in hashMap:
                hashMap.append(i)
                nums[k] = i
                k += 1
        
        nums[:] = nums[:k]
         
        return k

这个做法建立了一个数组用来存储重复值。

python 复制代码
if i not in hashMap

会导致多次遍历,猜测是这一段增加了内存消耗。

优化思路应该将遍历减少到最低

使用set优化

python 复制代码
class Solution:
    def removeDuplicates(self, nums: List[int]) -> int:
        seen = set()  # 用于记录已出现的元素
        k = 0  # 指向放置下一个唯一值的位置

        for i in nums:
            if i not in seen:
                seen.add(i)  # 将新元素添加到集合中
                nums[k] = i  # 将唯一值放到 nums 的前面
                k += 1

        # 保留前 k 个元素
        nums[:] = nums[:k]

        return k

注意set是基于 哈希表 实现的

set 比 list 效率高,尤其是在执行查找操作时,这是因为两者底层的实现机制不同。具体原因如下:

1. list 的实现

数据结构: list 是一种动态数组,元素按插入顺序连续存储。
查找操作:

当你执行 x in list,Python 必须从头开始遍历列表中的每个元素,逐一检查是否等于 x。

最坏情况下需要检查所有元素,时间复杂度为 O(n)。
适合的场景:

适用于需要保留元素顺序或频繁执行索引访问(list[i],时间复杂度为 O(1)。

2. set 的实现

数据结构:

set 是基于 哈希表 的无序集合。

每个元素会通过哈希函数映射到一个特定的存储位置(桶)。

哈希表通过哈希值快速定位元素的位置,而无需遍历整个集合。

查找操作:

当你执行 x in set,Python 使用哈希函数计算 x 的哈希值,然后直接定位到对应的存储桶,查看是否存在。

在没有大量哈希冲突的情况下,查找的时间复杂度为 O(1)。

即使发生哈希冲突(两个不同的值映射到相同的桶),通过链表或其他冲突处理机制,效率仍然远高于线性查找。

适合的场景:

适用于频繁执行查找、插入、删除操作,且不需要关心元素顺序。

相关推荐
while(努力):进步1 天前
5G与物联网:连接万物的数字化未来
leetcode
立志成为大牛的小牛1 天前
数据结构——五十一、散列表的基本概念(王道408)
开发语言·数据结构·学习·程序人生·算法·散列表
Coovally AI模型快速验证1 天前
去噪扩散模型,根本不去噪?何恺明新论文回归「去噪」本质
人工智能·深度学习·算法·机器学习·计算机视觉·数据挖掘·回归
歌_顿1 天前
attention、transform、bert 复习总结 1
人工智能·算法
MicroTech20251 天前
MLGO微算法科技时空卷积与双重注意机制驱动的脑信号多任务分类算法
科技·算法·分类
txp玩Linux1 天前
rk3568上解析webrtc音频降噪算法处理流程
算法·音视频·webrtc
立志成为大牛的小牛1 天前
数据结构——五十二、散列函数的构造(王道408)
数据结构·笔记·程序人生·考研·算法
2501_941804321 天前
C++在高性能互联网服务开发与系统优化中的应用与实战经验解析
leetcode
希望有朝一日能如愿以偿1 天前
力扣每日一题:可被三整除的最大和
数据结构·算法·leetcode
闲猿类1 天前
嵌入式第九天学习
linux·c语言·学习·算法·嵌入式