【LeetCode】4. 去重的效率提升

看一道简单题

初始做法

python 复制代码
class Solution:
    def removeDuplicates(self, nums: List[int]) -> int:
        hashMap = []
        k = 0

        for i in nums:
            if i not in hashMap:
                hashMap.append(i)
                nums[k] = i
                k += 1
        
        nums[:] = nums[:k]
         
        return k

这个做法建立了一个数组用来存储重复值。

python 复制代码
if i not in hashMap

会导致多次遍历,猜测是这一段增加了内存消耗。

优化思路应该将遍历减少到最低

使用set优化

python 复制代码
class Solution:
    def removeDuplicates(self, nums: List[int]) -> int:
        seen = set()  # 用于记录已出现的元素
        k = 0  # 指向放置下一个唯一值的位置

        for i in nums:
            if i not in seen:
                seen.add(i)  # 将新元素添加到集合中
                nums[k] = i  # 将唯一值放到 nums 的前面
                k += 1

        # 保留前 k 个元素
        nums[:] = nums[:k]

        return k

注意set是基于 哈希表 实现的

set 比 list 效率高,尤其是在执行查找操作时,这是因为两者底层的实现机制不同。具体原因如下:

1. list 的实现

数据结构: list 是一种动态数组,元素按插入顺序连续存储。
查找操作:

当你执行 x in list,Python 必须从头开始遍历列表中的每个元素,逐一检查是否等于 x。

最坏情况下需要检查所有元素,时间复杂度为 O(n)。
适合的场景:

适用于需要保留元素顺序或频繁执行索引访问(list[i],时间复杂度为 O(1)。

2. set 的实现

数据结构:

set 是基于 哈希表 的无序集合。

每个元素会通过哈希函数映射到一个特定的存储位置(桶)。

哈希表通过哈希值快速定位元素的位置,而无需遍历整个集合。

查找操作:

当你执行 x in set,Python 使用哈希函数计算 x 的哈希值,然后直接定位到对应的存储桶,查看是否存在。

在没有大量哈希冲突的情况下,查找的时间复杂度为 O(1)。

即使发生哈希冲突(两个不同的值映射到相同的桶),通过链表或其他冲突处理机制,效率仍然远高于线性查找。

适合的场景:

适用于频繁执行查找、插入、删除操作,且不需要关心元素顺序。

相关推荐
星火开发设计42 分钟前
枚举类 enum class:强类型枚举的优势
linux·开发语言·c++·学习·算法·知识
嘴贱欠吻!6 小时前
Flutter鸿蒙开发指南(七):轮播图搜索框和导航栏
算法·flutter·图搜索算法
张祥6422889046 小时前
误差理论与测量平差基础笔记十
笔记·算法·机器学习
踩坑记录6 小时前
leetcode hot100 2.两数相加 链表 medium
leetcode·链表
qq_192779877 小时前
C++模块化编程指南
开发语言·c++·算法
cici158749 小时前
大规模MIMO系统中Alamouti预编码的QPSK复用性能MATLAB仿真
算法·matlab·预编码算法
历程里程碑9 小时前
滑动窗口---- 无重复字符的最长子串
java·数据结构·c++·python·算法·leetcode·django
2501_9403152610 小时前
航电oj:首字母变大写
开发语言·c++·算法
CodeByV10 小时前
【算法题】多源BFS
算法
TracyCoder12310 小时前
LeetCode Hot100(18/100)——160. 相交链表
算法·leetcode