【LeetCode】4. 去重的效率提升

看一道简单题

初始做法

python 复制代码
class Solution:
    def removeDuplicates(self, nums: List[int]) -> int:
        hashMap = []
        k = 0

        for i in nums:
            if i not in hashMap:
                hashMap.append(i)
                nums[k] = i
                k += 1
        
        nums[:] = nums[:k]
         
        return k

这个做法建立了一个数组用来存储重复值。

python 复制代码
if i not in hashMap

会导致多次遍历,猜测是这一段增加了内存消耗。

优化思路应该将遍历减少到最低

使用set优化

python 复制代码
class Solution:
    def removeDuplicates(self, nums: List[int]) -> int:
        seen = set()  # 用于记录已出现的元素
        k = 0  # 指向放置下一个唯一值的位置

        for i in nums:
            if i not in seen:
                seen.add(i)  # 将新元素添加到集合中
                nums[k] = i  # 将唯一值放到 nums 的前面
                k += 1

        # 保留前 k 个元素
        nums[:] = nums[:k]

        return k

注意set是基于 哈希表 实现的

set 比 list 效率高,尤其是在执行查找操作时,这是因为两者底层的实现机制不同。具体原因如下:

1. list 的实现

数据结构: list 是一种动态数组,元素按插入顺序连续存储。
查找操作:

当你执行 x in list,Python 必须从头开始遍历列表中的每个元素,逐一检查是否等于 x。

最坏情况下需要检查所有元素,时间复杂度为 O(n)。
适合的场景:

适用于需要保留元素顺序或频繁执行索引访问(list[i],时间复杂度为 O(1)。

2. set 的实现

数据结构:

set 是基于 哈希表 的无序集合。

每个元素会通过哈希函数映射到一个特定的存储位置(桶)。

哈希表通过哈希值快速定位元素的位置,而无需遍历整个集合。

查找操作:

当你执行 x in set,Python 使用哈希函数计算 x 的哈希值,然后直接定位到对应的存储桶,查看是否存在。

在没有大量哈希冲突的情况下,查找的时间复杂度为 O(1)。

即使发生哈希冲突(两个不同的值映射到相同的桶),通过链表或其他冲突处理机制,效率仍然远高于线性查找。

适合的场景:

适用于频繁执行查找、插入、删除操作,且不需要关心元素顺序。

相关推荐
程序员-King.4 小时前
day158—回溯—全排列(LeetCode-46)
算法·leetcode·深度优先·回溯·递归
月挽清风5 小时前
代码随想录第七天:
数据结构·c++·算法
小O的算法实验室5 小时前
2026年AEI SCI1区TOP,基于改进 IRRT*-D* 算法的森林火灾救援场景下直升机轨迹规划,深度解析+性能实测
算法·论文复现·智能算法·智能算法改进
小郭团队6 小时前
2_1_七段式SVPWM (经典算法)算法理论与 MATLAB 实现详解
嵌入式硬件·算法·硬件架构·arm·dsp开发
充值修改昵称6 小时前
数据结构基础:从二叉树到多叉树数据结构进阶
数据结构·python·算法
Deepoch6 小时前
Deepoc数学大模型:发动机行业的算法引擎
人工智能·算法·机器人·发动机·deepoc·发动机行业
-To be number.wan7 小时前
【数据结构真题解析】哈希表中等难度挑战:冲突处理与查找效率深度剖析
数据结构·哈希算法
浅念-7 小时前
C语言小知识——指针(3)
c语言·开发语言·c++·经验分享·笔记·学习·算法
Hcoco_me7 小时前
大模型面试题84:是否了解 OpenAI 提出的Clip,它和SigLip有什么区别?为什么SigLip效果更好?
人工智能·算法·机器学习·chatgpt·机器人
BHXDML8 小时前
第九章:EM 算法
人工智能·算法·机器学习