【LeetCode】4. 去重的效率提升

看一道简单题

初始做法

python 复制代码
class Solution:
    def removeDuplicates(self, nums: List[int]) -> int:
        hashMap = []
        k = 0

        for i in nums:
            if i not in hashMap:
                hashMap.append(i)
                nums[k] = i
                k += 1
        
        nums[:] = nums[:k]
         
        return k

这个做法建立了一个数组用来存储重复值。

python 复制代码
if i not in hashMap

会导致多次遍历,猜测是这一段增加了内存消耗。

优化思路应该将遍历减少到最低

使用set优化

python 复制代码
class Solution:
    def removeDuplicates(self, nums: List[int]) -> int:
        seen = set()  # 用于记录已出现的元素
        k = 0  # 指向放置下一个唯一值的位置

        for i in nums:
            if i not in seen:
                seen.add(i)  # 将新元素添加到集合中
                nums[k] = i  # 将唯一值放到 nums 的前面
                k += 1

        # 保留前 k 个元素
        nums[:] = nums[:k]

        return k

注意set是基于 哈希表 实现的

set 比 list 效率高,尤其是在执行查找操作时,这是因为两者底层的实现机制不同。具体原因如下:

1. list 的实现

数据结构: list 是一种动态数组,元素按插入顺序连续存储。
查找操作:

当你执行 x in list,Python 必须从头开始遍历列表中的每个元素,逐一检查是否等于 x。

最坏情况下需要检查所有元素,时间复杂度为 O(n)。
适合的场景:

适用于需要保留元素顺序或频繁执行索引访问(list[i],时间复杂度为 O(1)。

2. set 的实现

数据结构:

set 是基于 哈希表 的无序集合。

每个元素会通过哈希函数映射到一个特定的存储位置(桶)。

哈希表通过哈希值快速定位元素的位置,而无需遍历整个集合。

查找操作:

当你执行 x in set,Python 使用哈希函数计算 x 的哈希值,然后直接定位到对应的存储桶,查看是否存在。

在没有大量哈希冲突的情况下,查找的时间复杂度为 O(1)。

即使发生哈希冲突(两个不同的值映射到相同的桶),通过链表或其他冲突处理机制,效率仍然远高于线性查找。

适合的场景:

适用于频繁执行查找、插入、删除操作,且不需要关心元素顺序。

相关推荐
君义_noip4 小时前
信息学奥赛一本通 1661:有趣的数列 | 洛谷 P3200 [HNOI2009] 有趣的数列
c++·算法·组合数学·信息学奥赛·csp-s
程序员:钧念4 小时前
深度学习与强化学习的区别
人工智能·python·深度学习·算法·transformer·rag
英英_5 小时前
MATLAB数值计算基础教程
数据结构·算法·matlab
一起养小猫5 小时前
LeetCode100天Day14-轮转数组与买卖股票最佳时机
算法·leetcode·职场和发展
hele_two6 小时前
快速幂算法
c++·python·算法
l1t6 小时前
利用DeepSeek将python DLX求解数独程序格式化并改成3.x版本
开发语言·python·算法·数独
jllllyuz6 小时前
基于子集模拟的系统与静态可靠性分析及Matlab优化算法实现
算法·matlab·概率论
程序员-King.7 小时前
day143—递归—对称二叉树(LeetCode-101)
数据结构·算法·leetcode·二叉树·递归
BlockChain8887 小时前
字符串最后一个单词的长度
算法·go
爱吃泡芙的小白白7 小时前
深入解析:2024年AI大模型核心算法与应用全景
人工智能·算法·大模型算法