LLM大模型实践10-聊天机器人

大型语言模型带给我们的激动人心的一种可能性是,我们可以通过它构建定制的聊天机器人 (Chatbot),而且只需很少的工作量。在这一章节的探索中,我们将带你了解如何利用会话形式,与具 有个性化特性(或专门为特定任务或行为设计)的聊天机器人进行深度对话。

像 ChatGPT 这样的聊天模型实际上是组装成以一系列消息作为输入,并返回一个模型生成的消息作为输 出的。这种聊天格式原本的设计目标是简便多轮对话,但我们通过之前的学习可以知道,它对于不会涉 及任何对话的单轮任务也同样有用。

给定身份

在 ChatGPT 网页界面中,您的消息称为用户消息,而 ChatGPT 的消息称为助手消息。但在构建聊天机 器人时,在发送了系统消息之后,您的角色可以仅作为用户 (user) ;也可以在用户和助手 (assistant) 之 间交替,从而提供对话上下文。

定义对话函数

def get_completion_v2(prompt, model="gpt-3.5-turbo"):

openai.api_key = "sk-xxx"

openai.base_url = "https:xxxx"

messages = [{"role": "user", "content": prompt}]

response = openai.chat.completions.create(

model=model,

messages=messages,

temperature=0, # 控制模型输出的随机程度

)

return response.choices[0].message.content

def get_completion_temperature_v2(messages, model="gpt-3.5-turbo", temperature=0):

openai.api_key = "sk-xxxx"

openai.base_url = "https://axxxx"

response = openai.chat.completions.create(

model=model,

messages=messages,

temperature=temperature, # 控制模型输出的随机程度

)

#print(str(response.choices[0].message))

return response.choices[0].message.content

讲笑话

中文

messages = [

{'role':'system', 'content':'你是一个像莎士比亚一样说话的助手。'},

{'role':'user', 'content':'给我讲个笑话'},

{'role':'assistant', 'content':'鸡为什么过马路'},

{'role':'user', 'content':'我不知道'} ]

response = get_completion_temperature_v2(messages, temperature=1)

print(response)

友好的聊天机器人

中文

messages = [

{'role':'system', 'content':'你是个友好的聊天机器人。'},

{'role':'user', 'content':'Hi, 我是Isa。'} ]

response = get_completion_temperature_v2(messages, temperature=1)

print(response)

构建上下文

中文

messages = [

{'role':'system', 'content':'你是个友好的聊天机器人。'},

{'role':'user', 'content':'好,你能提醒我,我的名字是什么吗?'} ]

response = get_completion_temperature_v2(messages, temperature=1)

print(response)

中文

messages = [

{'role':'system', 'content':'你是个友好的聊天机器人。'},

{'role':'user', 'content':'Hi, 我是Isa'},

{'role':'assistant', 'content': "Hi Isa! 很高兴认识你。今天有什么可以帮到你的吗?"},

{'role':'user', 'content':'是的,你可以提醒我, 我的名字是什么?'} ]

response = get_completion_temperature_v2(messages, temperature=1)

print(response)

订餐机器人

构建机器人

def collect_messages(_):

prompt = inp.value_input

inp.value = ''

context.append({'role':'user', 'content':f"{prompt}"})

response = get_completion_temperature_v2(context)

context.append({'role':'assistant', 'content':f"{response}"})

panels.append(

pn.Row('User:', pn.pane.Markdown(prompt, width=600)))

panels.append(

pn.Row('Assistant:', pn.pane.Markdown(response, width=600)))

return pn.Column(*panels)

!pip install panel

中文

import panel as pn # GUI

pn.extension()

panels = [] # collect display

context = [{'role':'system', 'content':"""

菜单包括:

你是订餐机器人,为披萨餐厅自动收集订单信息。

你要首先问候顾客。然后等待用户回复收集订单信息。收集完信息需确认顾客是否还需要添加其他内容。

最后需要询问是否自取或外送,如果是外送,你要询问地址。

最后告诉顾客订单总金额,并送上祝福。

请确保明确所有选项、附加项和尺寸,以便从菜单中识别出该项唯一的内容。

你的回应应该以简短、非常随意和友好的风格呈现。

菜品:

意式辣香肠披萨(大、中、小) 12.95、10.00、7.00

芝士披萨(大、中、小) 10.95、9.25、6.50

茄子披萨(大、中、小) 11.95、9.75、6.75

薯条(大、小) 4.50、3.50

希腊沙拉 7.25

配料:

奶酪 2.00

蘑菇 1.50

香肠 3.00

加拿大熏肉 3.50

AI酱 1.50

辣椒 1.00

饮料:

可乐(大、中、小) 3.00、2.00、1.00

雪碧(大、中、小) 3.00、2.00、1.00

瓶装水 5.00

"""} ] # accumulate messages

inp = pn.widgets.TextInput(value="Hi", placeholder='Enter text here...')

button_conversation = pn.widgets.Button(name="Chat!")

interactive_conversation = pn.bind(collect_messages, button_conversation)

dashboard = pn.Column(

inp,

pn.Row(button_conversation),

pn.panel(interactive_conversation, loading_indicator=True, height=300),

)

Dashboard

初始效果

创建json摘要

messages = context.copy()

messages.append(

{'role':'system', 'content':

'''创建上一个食品订单的 json 摘要。\

逐项列出每件商品的价格,字段应该是 1) 披萨,包括大小 2) 配料列表 3) 饮料列表,包括大小 4) 配菜

列表包括大小 5) 总价

你应该给我返回一个可解析的Json对象,包括上述字段'''},

)

response = get_completion_temperature_v2(messages, temperature=0)

print(response)

相关推荐
盛寒16 分钟前
N元语言模型 —— 一文讲懂!!!
人工智能·语言模型·自然语言处理
weixin_1772972206923 分钟前
家政小程序开发——AI+IoT技术融合,打造“智慧家政”新物种
人工智能·物联网
Jay Kay37 分钟前
ReLU 新生:从死亡困境到强势回归
人工智能·数据挖掘·回归
Blossom.1181 小时前
使用Python和Flask构建简单的机器学习API
人工智能·python·深度学习·目标检测·机器学习·数据挖掘·flask
无声旅者1 小时前
AI 模型分类全解:特性与选择指南
人工智能·ai·ai大模型
Grassto2 小时前
Cursor Rules 使用
人工智能
MYH5162 小时前
深度学习在非线性场景中的核心应用领域及向量/张量数据处理案例,结合工业、金融等领域的实际落地场景分析
人工智能·深度学习
Lilith的AI学习日记2 小时前
什么是预训练?深入解读大模型AI的“高考集训”
开发语言·人工智能·深度学习·神经网络·机器学习·ai编程
聚客AI2 小时前
PyTorch玩转CNN:卷积操作可视化+五大经典网络复现+分类项目
人工智能·pytorch·神经网络
程序员岳焱2 小时前
深度剖析:Spring AI 与 LangChain4j,谁才是 Java 程序员的 AI 开发利器?
java·人工智能·后端