大语言模型训练的数据集从哪里来?

继续上篇文章的内容说说大语言模型预训练的数据集从哪里来以及为什么互联网上的数据已经被耗尽这个说法并不专业,再谈谈大语言模型预训练数据集的优化思路。

  1. GPT2使用的数据集是WebText,该数据集大概40GB,由OpenAI创建,主要内容爬取自Reddit平台的出站网络链接对应的网站,每个链接要至少有三个赞,以保障数据质量。

  2. 但是WebText数据集不公开,仅OpenAI自己能使用,于是OpenWebText数据集(OpenWebText数据集)应运而生,该数据集搜集超过23亿个链接,大于WebText数据集。

  3. GPT3的训练使用了Common Crawl、WebText2、维基百科、电子书也以及一些多种来源的网络文本、新闻网站数据集等(纽约时报的新闻大概也被爬取了,所以有了后来的诉讼),大概570GB。

  4. 以下是llama开源模型早期版本的预训练数据集来源,来源于多个数据集,大概4.8TB,比GPT3多了Github、ArXiv(开放的学术论文分享平台,Kaggle上也有它的数据集)还有StackExchange。

  1. 写到这里可以说明为什么说互联网的数据没有被耗尽:
  • 许多网站的数据是不可爬取的,有研究认为类似Twitter、Faceboo等这种网站可爬取的数据只占20%左右
  • 封闭APP的数据不可爬取,以中文互联网为例,现在APP的数据要远大于PC互联网数据了,最典型比如微信、小红书等这些APP的数据非常多、非常有价值,但是无法获取
  • 互联网数据在实时更新,不断有新的数据进来
  1. 进一步,企业的私有数据没有被用来训练。

  2. 再进一步,物理世界的许多数据并没有被捕获,比如线下大会的视频如果没有传到网络就无法被纳入训练集。智能汽车将会提供超大量的数据,未来AR眼镜如果能普及将会是一个更大的数据来源。

  3. 所以预训练用的数据集其实还可以优化,还有以下思路可以参考:

  • 预训练的数据集来源优化,获取更高质量的数据集
  • 模型训练的时候为了节省资源会对原数据进行压缩降维,如果数据集高质量点但小点,可以给减小压缩空间

++参考来源:++
大语言模型(LLM)预训练数据集调研分析

大模型训练数据集分析:多样性和挑战-CSDN博客

相关推荐
千宇宙航9 分钟前
闲庭信步使用SV搭建图像测试平台:第三十一课——基于神经网络的手写数字识别
图像处理·人工智能·深度学习·神经网络·计算机视觉·fpga开发
IT古董12 分钟前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(4)模型评价与调整(Model Evaluation & Tuning)
神经网络·机器学习·回归
onceco37 分钟前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
jndingxin3 小时前
OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
人工智能·opencv·计算机视觉
Sweet锦4 小时前
零基础保姆级本地化部署文心大模型4.5开源系列
人工智能·语言模型·文心一言
hie988944 小时前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab
晨同学03275 小时前
opencv的颜色通道问题 & rgb & bgr
人工智能·opencv·计算机视觉
蓝婷儿5 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
大千AI助手5 小时前
PageRank:互联网的马尔可夫链平衡态
人工智能·机器学习·贝叶斯·mc·pagerank·条件概率·马尔科夫链
小和尚同志5 小时前
Cline | Cline + Grok3 免费 AI 编程新体验
人工智能·aigc