《机器学习》——贝叶斯算法

贝叶斯简介

  • 贝叶斯公式,又称贝叶斯定理、贝叶斯法则,最初是用来描述两个事件的条件概率间的关系的公式,后来被人们发现具有很深刻的实际意义和应用价值。该公式的实际内涵是,支持某项属性的事件发生得愈多,则该属性成立的可能性就愈大。
  • 利用贝叶斯公式可以定量地描述由果推因的可靠程度,在经济、医药、人工智能等领域中广泛应用。
  • 贝叶斯公式可以拓展为随机变量形式,在贝叶斯统计的观点下,如果已知样本的观察值,便可以使用参数的后验分布来进行参数估计。

贝叶斯分类器

  • 参数:
    • alpha:
      • 类型:浮点数,默认为 1.0
    • fit_prior:
      • 类型:布尔值,默认为 True。
    • binarize(二值化):
      • 浮点数或 None,默认值=0.0
      • 样本特征二值化(映射到布尔值)的阈值。如果为 None,则假定输入已由二进制向量组成。
    • class_prior:
      • 数组,形状为 (n_classes,),默认值为 None
      • 类别的先验概率。如果指定,则先验不会根据数据进行调整。

贝叶斯实例

我们通过贝叶斯的算法实例,通过算法来实现项目。

本项目目标是对数据进行分类,共一百条数据,且第一列为数据编号不参与项目,最后一列为数据的分类标签有0和1类别。

项目过程

  • 导入数据
  • 处理数据
  • 划分数据
  • 通过贝叶斯分类器训练模型
  • 自测并用测试集测试
  • 产生分类报告和绘制混淆矩阵

导入数据

数据:通过网盘分享的文件:iris.csv

链接: https://pan.baidu.com/s/1ssc_VSVSUbkzz2-SOipV9w 提取码: jq54

python 复制代码
# 导入数据
data = pd.read_csv('iris.csv',header=None)

处理数据

python 复制代码
# 删除第一列
data = data.drop(0,axis=1)
x_whole = data.drop(5,axis=1) # 删除第5列其余为原始特征数据
y_whole = data[5] # 第5列为原始标签

划分数据

python 复制代码
# 划分训练集和测试集,从原始数据中划分20%为测试集,80%为训练集。
from sklearn.model_selection import train_test_split
x_train_w,x_test_w,y_train_w,y_test_w=\
    train_test_split(x_whole,y_whole,test_size=0.2,random_state=0)

通过贝叶斯分类器训练模型

python 复制代码
# 导入贝叶斯分类器
from sklearn.naive_bayes import MultinomialNB
classifier = MultinomialNB()
# 训练模型
classifier.fit(x_train_w,y_train_w)

自测并用测试集测试

python 复制代码
# 使用训练集自测
from sklearn import metrics
train_pred = classifier.predict(x_train_w)
# 使用测试集进行测试
test_pred = classifier.predict(x_test_w)

产生分类报告和绘制混淆矩阵

python 复制代码
# 分别对训练集和测试集的结果产生分类报告和混淆矩阵
print(metrics.classification_report(y_train_w,train_pred))
cm_plot(y_train_w,train_pred).show()
print(metrics.classification_report(y_test_w,test_pred))
cm_plot(y_test_w,test_pred).show()


可以通过分类报告和混淆矩阵可以看出,没有产生过拟合和欠拟合等,准确率和召回率都很高。

相关推荐
LCG元6 分钟前
大模型驱动的围术期质控系统全面解析与应用探索
人工智能
lihuayong18 分钟前
计算机视觉:主流数据集整理
人工智能·计算机视觉·mnist数据集·coco数据集·图像数据集·cifar-10数据集·imagenet数据集
政安晨27 分钟前
政安晨【零基础玩转各类开源AI项目】DeepSeek 多模态大模型Janus-Pro-7B,本地部署!支持图像识别和图像生成
人工智能·大模型·多模态·deepseek·janus-pro-7b
一ge科研小菜鸡32 分钟前
DeepSeek 与后端开发:AI 赋能云端架构与智能化服务
人工智能·云原生
冰 河34 分钟前
‌最新版DeepSeek保姆级安装教程:本地部署+避坑指南
人工智能·程序员·openai·deepseek·冰河大模型
维维180-3121-145535 分钟前
AI赋能生态学暨“ChatGPT+”多技术融合在生态系统服务中的实践技术应用与论文撰写
人工智能·chatgpt
終不似少年遊*1 小时前
词向量与词嵌入
人工智能·深度学习·nlp·机器翻译·词嵌入
杜大哥1 小时前
如何在WPS打开的word、excel文件中,使用AI?
人工智能·word·excel·wps
Leiditech__1 小时前
人工智能时代电子机器人静电问题及电路设计防范措施
人工智能·嵌入式硬件·机器人·硬件工程
谨慎谦虚2 小时前
Trae 体验:探索被忽视的 Chat 模式
人工智能·trae