《机器学习》——贝叶斯算法

贝叶斯简介

  • 贝叶斯公式,又称贝叶斯定理、贝叶斯法则,最初是用来描述两个事件的条件概率间的关系的公式,后来被人们发现具有很深刻的实际意义和应用价值。该公式的实际内涵是,支持某项属性的事件发生得愈多,则该属性成立的可能性就愈大。
  • 利用贝叶斯公式可以定量地描述由果推因的可靠程度,在经济、医药、人工智能等领域中广泛应用。
  • 贝叶斯公式可以拓展为随机变量形式,在贝叶斯统计的观点下,如果已知样本的观察值,便可以使用参数的后验分布来进行参数估计。

贝叶斯分类器

  • 参数:
    • alpha:
      • 类型:浮点数,默认为 1.0
    • fit_prior:
      • 类型:布尔值,默认为 True。
    • binarize(二值化):
      • 浮点数或 None,默认值=0.0
      • 样本特征二值化(映射到布尔值)的阈值。如果为 None,则假定输入已由二进制向量组成。
    • class_prior:
      • 数组,形状为 (n_classes,),默认值为 None
      • 类别的先验概率。如果指定,则先验不会根据数据进行调整。

贝叶斯实例

我们通过贝叶斯的算法实例,通过算法来实现项目。

本项目目标是对数据进行分类,共一百条数据,且第一列为数据编号不参与项目,最后一列为数据的分类标签有0和1类别。

项目过程

  • 导入数据
  • 处理数据
  • 划分数据
  • 通过贝叶斯分类器训练模型
  • 自测并用测试集测试
  • 产生分类报告和绘制混淆矩阵

导入数据

数据:通过网盘分享的文件:iris.csv

链接: https://pan.baidu.com/s/1ssc_VSVSUbkzz2-SOipV9w 提取码: jq54

python 复制代码
# 导入数据
data = pd.read_csv('iris.csv',header=None)

处理数据

python 复制代码
# 删除第一列
data = data.drop(0,axis=1)
x_whole = data.drop(5,axis=1) # 删除第5列其余为原始特征数据
y_whole = data[5] # 第5列为原始标签

划分数据

python 复制代码
# 划分训练集和测试集,从原始数据中划分20%为测试集,80%为训练集。
from sklearn.model_selection import train_test_split
x_train_w,x_test_w,y_train_w,y_test_w=\
    train_test_split(x_whole,y_whole,test_size=0.2,random_state=0)

通过贝叶斯分类器训练模型

python 复制代码
# 导入贝叶斯分类器
from sklearn.naive_bayes import MultinomialNB
classifier = MultinomialNB()
# 训练模型
classifier.fit(x_train_w,y_train_w)

自测并用测试集测试

python 复制代码
# 使用训练集自测
from sklearn import metrics
train_pred = classifier.predict(x_train_w)
# 使用测试集进行测试
test_pred = classifier.predict(x_test_w)

产生分类报告和绘制混淆矩阵

python 复制代码
# 分别对训练集和测试集的结果产生分类报告和混淆矩阵
print(metrics.classification_report(y_train_w,train_pred))
cm_plot(y_train_w,train_pred).show()
print(metrics.classification_report(y_test_w,test_pred))
cm_plot(y_test_w,test_pred).show()


可以通过分类报告和混淆矩阵可以看出,没有产生过拟合和欠拟合等,准确率和召回率都很高。

相关推荐
AndrewHZ23 分钟前
【3D重建技术】如何基于遥感图像和DEM等数据进行城市级高精度三维重建?
图像处理·人工智能·深度学习·3d·dem·遥感图像·3d重建
飞哥数智坊30 分钟前
Coze实战第18讲:Coze+计划任务,我终于实现了企微资讯简报的定时推送
人工智能·coze·trae
WBluuue44 分钟前
数学建模:智能优化算法
python·机器学习·数学建模·爬山算法·启发式算法·聚类·模拟退火算法
Code_流苏1 小时前
AI热点周报(8.10~8.16):AI界“冰火两重天“,GPT-5陷入热议,DeepSeek R2模型训练受阻?
人工智能·gpt·gpt5·deepseek r2·ai热点·本周周报
赴3351 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩1 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp
双翌视觉1 小时前
工业视觉检测中的常见的四种打光方式
人工智能·计算机视觉·视觉检测
念念01071 小时前
基于MATLAB多智能体强化学习的出租车资源配置优化系统设计与实现
大数据·人工智能·matlab
一车小面包1 小时前
机器学习--决策树
决策树·机器学习
nonono2 小时前
深度学习——常见的神经网络
人工智能·深度学习·神经网络