【Pandas】pandas Series rsub

Pandas2.2 Series

Binary operator functions

方法 描述
Series.add() 用于对两个 Series 进行逐元素加法运算
Series.sub() 用于对两个 Series 进行逐元素减法运算
Series.mul() 用于对两个 Series 进行逐元素乘法运算
Series.div() 用于对两个 Series 进行逐元素除法运算
Series.truediv() 用于执行真除法(即浮点数除法)操作
Series.floordiv() 用于执行地板除法(即整数除法)操作
Series.mod() 用于执行逐元素的取模运算
Series.pow() 用于执行逐元素的幂运算
Series.radd() 用于执行反向逐元素加法运算
Series.rsub() 用于执行反向逐元素减法运算

pandas.Series.rsub

pandas.Series.rsub 是 Pandas 库中 Series 对象的一个方法,用于执行反向逐元素减法运算。反向减法运算意味着将当前 Series 中的每个元素与另一个 Series、标量或其他可迭代对象中的对应元素进行减法运算,但顺序是反向的。具体来说,s1.rsub(s2) 等价于 s2 - s1

参数说明
  • other: 另一个 Series、标量或其他可迭代对象,用于执行减法运算。
  • level: 如果两个 Series 对象的索引是多重索引,则可以指定在哪个级别进行对齐。
  • fill_value: 如果在对齐过程中出现缺失值(NaN),可以使用 fill_value 指定一个值来填充这些缺失值,从而避免产生 NaN 结果。
  • axis: 指定操作的轴,默认为 0。
返回值

返回一个新的 Series 对象,其中包含反向逐元素减法运算的结果。

示例
示例1: 标量反向减法
python 复制代码
import pandas as pd

s = pd.Series([1, 2, 3, 4])
result = s.rsub(10)
print(result)

输出:

0     9
1     8
2     7
3     6
dtype: int64
示例2: Series 反向减法
python 复制代码
import pandas as pd

s1 = pd.Series([1, 2, 3, 4])
s2 = pd.Series([10, 20, 30, 40])
result = s1.rsub(s2)
print(result)

输出:

0     9
1    18
2    27
3    36
dtype: int64
示例3: 使用 fill_value 处理缺失值
python 复制代码
import pandas as pd
import numpy as np

s1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
s2 = pd.Series([10, 20, 30], index=['a', 'b', 'c'])
result = s1.rsub(s2, fill_value=0)
print(result)

输出:

a     9.0
b    18.0
c    27.0
d   -4.0
dtype: float64

在这个例子中,s2 没有索引 'd',因此在对齐时 s2['d'] 被视为缺失值,并用 fill_value 指定的值 0 来代替,从而计算出 -4

示例4: 索引不匹配的反向减法
python 复制代码
import pandas as pd

s1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
s2 = pd.Series([10, 20, 30], index=['b', 'c', 'd'])
result = s1.rsub(s2)
print(result)

输出:

a     NaN
b     8.0
c    17.0
d    26.0
dtype: float64

在这个例子中,s1s2 的索引不完全匹配,未对齐的索引位置结果为 NaN。

通过这些示例,可以看到 pandas.Series.rsub 方法在处理 Series 之间的反向逐元素减法运算时的强大功能和灵活性。

相关推荐
weixin_404679311 小时前
Xinference 常见bug: "detail": "Invalid input. Please specify the prompt."
开发语言·python·prompt·bug·pandas
liuweidong08022 小时前
【Pandas】pandas Series radd
pandas
爱喝热水的呀哈喽12 小时前
智能风控/数据分析 聚合 分组 连接
数据挖掘·数据分析·pandas
liuweidong08022 天前
【Pandas】pandas Series truediv
pandas
背太阳的牧羊人4 天前
grouped.get_group((‘B‘, ‘A‘))选择分组
python·pandas
赛丽曼4 天前
Python数据可视化-Pandas绘图
python·pandas
Lx3524 天前
Pandas数据应用:情感分析
python·pandas
风_流沙5 天前
python pandas 对mysql 一些常见操作
python·mysql·pandas
老哥不老6 天前
解决openpyxl操纵带公式的excel或者csv之后,pandas无法读取数值的问题
excel·pandas