【Pandas】pandas Series rsub

Pandas2.2 Series

Binary operator functions

方法 描述
Series.add() 用于对两个 Series 进行逐元素加法运算
Series.sub() 用于对两个 Series 进行逐元素减法运算
Series.mul() 用于对两个 Series 进行逐元素乘法运算
Series.div() 用于对两个 Series 进行逐元素除法运算
Series.truediv() 用于执行真除法(即浮点数除法)操作
Series.floordiv() 用于执行地板除法(即整数除法)操作
Series.mod() 用于执行逐元素的取模运算
Series.pow() 用于执行逐元素的幂运算
Series.radd() 用于执行反向逐元素加法运算
Series.rsub() 用于执行反向逐元素减法运算

pandas.Series.rsub

pandas.Series.rsub 是 Pandas 库中 Series 对象的一个方法,用于执行反向逐元素减法运算。反向减法运算意味着将当前 Series 中的每个元素与另一个 Series、标量或其他可迭代对象中的对应元素进行减法运算,但顺序是反向的。具体来说,s1.rsub(s2) 等价于 s2 - s1

参数说明
  • other: 另一个 Series、标量或其他可迭代对象,用于执行减法运算。
  • level: 如果两个 Series 对象的索引是多重索引,则可以指定在哪个级别进行对齐。
  • fill_value: 如果在对齐过程中出现缺失值(NaN),可以使用 fill_value 指定一个值来填充这些缺失值,从而避免产生 NaN 结果。
  • axis: 指定操作的轴,默认为 0。
返回值

返回一个新的 Series 对象,其中包含反向逐元素减法运算的结果。

示例
示例1: 标量反向减法
python 复制代码
import pandas as pd

s = pd.Series([1, 2, 3, 4])
result = s.rsub(10)
print(result)

输出:

复制代码
0     9
1     8
2     7
3     6
dtype: int64
示例2: Series 反向减法
python 复制代码
import pandas as pd

s1 = pd.Series([1, 2, 3, 4])
s2 = pd.Series([10, 20, 30, 40])
result = s1.rsub(s2)
print(result)

输出:

复制代码
0     9
1    18
2    27
3    36
dtype: int64
示例3: 使用 fill_value 处理缺失值
python 复制代码
import pandas as pd
import numpy as np

s1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
s2 = pd.Series([10, 20, 30], index=['a', 'b', 'c'])
result = s1.rsub(s2, fill_value=0)
print(result)

输出:

复制代码
a     9.0
b    18.0
c    27.0
d   -4.0
dtype: float64

在这个例子中,s2 没有索引 'd',因此在对齐时 s2['d'] 被视为缺失值,并用 fill_value 指定的值 0 来代替,从而计算出 -4

示例4: 索引不匹配的反向减法
python 复制代码
import pandas as pd

s1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
s2 = pd.Series([10, 20, 30], index=['b', 'c', 'd'])
result = s1.rsub(s2)
print(result)

输出:

复制代码
a     NaN
b     8.0
c    17.0
d    26.0
dtype: float64

在这个例子中,s1s2 的索引不完全匹配,未对齐的索引位置结果为 NaN。

通过这些示例,可以看到 pandas.Series.rsub 方法在处理 Series 之间的反向逐元素减法运算时的强大功能和灵活性。

相关推荐
laplace01232 小时前
LangChain 1.0 入门实战(Part 1)详细笔记
笔记·python·langchain·numpy·pandas
Font Tian6 小时前
Pandas 3.0 全解:从默认字符串类型到 Copy-on-Write 的一场“内存模型重构”
python·重构·数据分析·pandas
liu****7 小时前
04_Pandas数据分析入门
python·jupyter·数据挖掘·数据分析·numpy·pandas·python常用工具
liu****1 天前
02_Pandas_数据结构
数据结构·python·pandas·python基础
渡我白衣1 天前
计算机组成原理(11):加法器
python·机器学习·numpy·pandas·matplotlib·计组·数电
falldeep2 天前
Pandas入门指南
数据结构·算法·leetcode·pandas
墨上烟雨2 天前
Pandas 数据清洗详解
pandas
万粉变现经纪人2 天前
如何解决 pip install 代理报错 SOCKS5 握手失败 ReadTimeoutError 问题
java·python·pycharm·beautifulsoup·bug·pandas·pip
晨晨渝奇2 天前
pandas 中将两个 DataFrame 分别导出到同一个 Excel 同一个工作表(sheet1)的 A1 单元格和 D1 单元格
excel·pandas
jarreyer4 天前
python,numpy,pandas和matplotlib版本对应关系
python·numpy·pandas