第R4周:LSTM-火灾温度预测

电脑环境:

语言环境:Python 3.8.0

一、代码流程

1、导入包,设置GPU

python 复制代码
import torch.nn.functional as F
import torch.nn as nn
import torch
import numpy as np
import pandas as pd

2、导入数据

python 复制代码
data = pd.read_csv('woodpine2.csv')
data
python 复制代码
	Time	Tem1	CO 1	Soot 1
0	0.000	25.0	0.000000	0.000000
1	0.228	25.0	0.000000	0.000000
2	0.456	25.0	0.000000	0.000000
3	0.685	25.0	0.000000	0.000000
4	0.913	25.0	0.000000	0.000000
...	...	...	...	...
5943	366.000	295.0	0.000077	0.000496
5944	366.000	294.0	0.000077	0.000494
5945	367.000	292.0	0.000077	0.000491
5946	367.000	291.0	0.000076	0.000489
5947	367.000	290.0	0.000076	0.000487
5948 rows × 4 columns

3、数据集可视化

python 复制代码
from os import confstr_names
import matplotlib.pyplot as plt
import seaborn as sns

plt.rcParams['figure.dpi'] = 500
plt.rcParams['savefig.dpi'] = 500

fig, ax = plt.subplots(1, 3, constrained_layout=True, figsize=(14, 3))
sns.lineplot(data=data['Tem1'], ax=ax[0])
sns.lineplot(data=data['CO 1'], ax=ax[1])
sns.lineplot(data=data['Soot 1'], ax=ax[2])
plt.show()
python 复制代码
dataFrame = data.iloc[:, 1:]
dataFrame

4、数据集预处理

python 复制代码
from sklearn.preprocessing import MinMaxScaler

dataFrame = data.iloc[:, 1:].copy()

scaler = MinMaxScaler(feature_range=(0, 1))

for i in ['CO 1', 'Soot 1', 'Tem1']:
    dataFrame[i] = scaler.fit_transform(dataFrame[i].values.reshape(-1, 1))  

dataFrame.shape

(5948, 3)

5、设置X,y

python 复制代码
width_X = 8
width_Y = 1

X = []
y = []

in_start = 0

for _, _ in data.iterrows():
    in_end = in_start + width_X
    out_end = in_end + width_Y
    if out_end < len(dataFrame):
        X_ = np.array(dataFrame.iloc[in_start:in_end, :])
        y_ = np.array(dataFrame.iloc[in_end:out_end, :])
        X.append(X_)
        y.append(y_)
    in_start += 1 
X = np.array(X)
y = np.array(y)

X.shape, y.shape

((5939, 8, 3), (5939, 1, 1))

检查数据集中是否有空值

python 复制代码
print(np.any(np.isnan(X)))
print(np.any(np.isnan(y)))

6、划分数据集

python 复制代码
X_train = torch.tensor(np.array(X[:5000]), dtype=torch.float32)
y_train = torch.tensor(np.array(y[:5000]), dtype=torch. float32)

X_test = torch.tensor(np.array(X[5000:]), dtype=torch.float32)
y_test = torch.tensor(np.array(y[5000:]), dtype=torch. float32)

X_train.shape, y_train.shape

(torch.Size([5000, 8, 3]), torch.Size([5000, 1, 3]))

python 复制代码
from torch.utils.data import TensorDataset, DataLoader
train_dl = DataLoader(TensorDataset(X_train, y_train),
                        batch_size=64,
                        shuffle=False)
test_dl = DataLoader(TensorDataset(X_test, y_test),
                        batch_size=64,
                        shuffle=False)

7、构建模型

python 复制代码
class model_lstm(nn.Module):
    def __init__(self):
        super(model_lstm, self).__init__()

        self.lstm0 = nn.LSTM(input_size=3, hidden_size=320,
                             num_layers=1, batch_first=True)
        
        self.lstm1 = nn.LSTM(input_size=320, hidden_size=320,
                             num_layers=1, batch_first=True)
        self.fc0 = nn.Linear(320, 1)

    def forward(self, x):
        out, hidden1 = self.lstm0(x)
        out, _ = self. lstm1(out, hidden1)
        out = self.fc0(out)
        return out[:, -1:, :]
        #取2个预测值,否则经过1stm会得到8*2个预
model = model_lstm()
model

8、定义训练函数

python 复制代码
import copy
def train(train_dl, model, loss_fn, opt, lr_scheduler=None) :
    size = len(train_dl.dataset)
    num_batches = len(train_dl)
    train_loss = 0 #初始化训练损失和正确率
    for x, y in train_dl:
        x, y = x.to(device), y.to(device)
        #计算预测误差
        pred = model(x) #网络输出
        loss = loss_fn(pred, y) #计算网络输出和真实值之间的差距
        # 反向传播
        opt.zero_grad()#grad属性归零
        loss.backward()# 反向传播
        opt.step()# 每一步自动更新

        #记录Loss
        train_loss += loss. item()
    if lr_scheduler is not None:
        lr_scheduler.step()
        print ("learning rate = {:.5f}". format(opt.param_groups[0]['lr']), end='  ')
    train_loss /= num_batches
    return train_loss

9、定义测试函数

python 复制代码
def test (dataloader, model, loss_fn) :
    size = len(dataloader.dataset) #测试集的大小
    num_batches = len(dataloader)# 批次数目
    
    test_loss = 0
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for x, y in dataloader:
            x, y = x.to(device), y.to(device)
            # 计算loss
            y_pred = model(x)
            loss = loss_fn(y_pred, y)
            test_loss += loss.item()
    test_loss /= num_batches
    return test_loss

10、正式训练

python 复制代码
# 设置GPU训练
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")

#训练模型
model = model_lstm()
model = model.to(device)
loss_fn = nn.MSELoss() #创建损失函数
learn_rate = 1e-1 #学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate, weight_decay=1e-4)
epochs = 50
train_loss = []
test_loss = []
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(opt, epochs, last_epoch=-1)

for epoch in range(epochs):
    model.train()
    epoch_train_loss = train(train_dl, model, loss_fn, opt, lr_scheduler)

    model.eval()
    epoch_test_loss = test(test_dl, model, loss_fn)

    train_loss.append(epoch_train_loss)
    test_loss.append(epoch_test_loss)

    template = ('Epoch: {:2d}, Train loss: {:.5f}, Test loss: {:.5f}')
    print(template.format(epoch+1, epoch_train_loss,epoch_test_loss))
print("="*20, 'Done', "="*70)

11、模型评估- LOSS图

python 复制代码
import matplotlib.pyplot as plt
plt. figure(figsize=(5, 3), dpi=120)

plt.plot(train_loss, label='LSTM Training Loss')
plt.plot(test_loss, label='LSTM Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()

12、调用模型进行训练

python 复制代码
predicted_y_lstm = sc.inverse_transform(model(X_test).detach().numpy().reshape(-1,1))
y_test_1 = sc.inverse_transform(y_test.reshape(-1,1))
y_test_one = [i[0] for i in y_test_1]
predicted_y_lstm_one = [i[0] for i in predicted_y_lstm]
                                        
plt.figure(figsize=(5, 3) , dpi=120)
# 画出真实数据和预测数据的对比曲线
plt.plot(y_test_one[:2000], color='red', label='real_temp')
plt.plot(predicted_y_lstm_one[:2000], color='blue', label='prediction')
plt.title('Title')
plt.xlabel('X')
plt.ylabel('y')
plt.legend ()
plt.show( )
python 复制代码
from sklearn import metrics
'''
RMSE:均方根误差--->对均方误差开方
R2:决定系数,可以简单理解为反映模型拟合优度的重要的统计量
'''
RMSE_lstm = metrics.mean_squared_error(predicted_y_lstm_one, y_test_1)**0.5
R2_lstm = metrics.r2_score(predicted_y_lstm_one, y_test_1)
print('均方根误差:%.5f' % RMSE_lstm)
print('R2: %.5f' % R2_lstm)

均方根误差:7.01314

R2: 0.82595

相关推荐
水如烟21 小时前
孤能子视角:“组织行为学–组织文化“
人工智能
大山同学1 天前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
薛定谔的猫19821 天前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
壮Sir不壮1 天前
2026年奇点:Clawdbot引爆个人AI代理
人工智能·ai·大模型·claude·clawdbot·moltbot·openclaw
PaperRed ai写作降重助手1 天前
高性价比 AI 论文写作软件推荐:2026 年预算友好型
人工智能·aigc·论文·写作·ai写作·智能降重
玉梅小洋1 天前
Claude Code 从入门到精通(七):Sub Agent 与 Skill 终极PK
人工智能·ai·大模型·ai编程·claude·ai工具
-嘟囔着拯救世界-1 天前
【保姆级教程】Win11 下从零部署 Claude Code:本地环境配置 + VSCode 可视化界面全流程指南
人工智能·vscode·ai·编辑器·html5·ai编程·claude code
正见TrueView1 天前
程一笑的价值选择:AI金玉其外,“收割”老人败絮其中
人工智能
Imm7771 天前
中国知名的车膜品牌推荐几家
人工智能·python
风静如云1 天前
Claude Code:进入dash模式
人工智能