第R4周:LSTM-火灾温度预测

电脑环境:

语言环境:Python 3.8.0

一、代码流程

1、导入包,设置GPU

python 复制代码
import torch.nn.functional as F
import torch.nn as nn
import torch
import numpy as np
import pandas as pd

2、导入数据

python 复制代码
data = pd.read_csv('woodpine2.csv')
data
python 复制代码
	Time	Tem1	CO 1	Soot 1
0	0.000	25.0	0.000000	0.000000
1	0.228	25.0	0.000000	0.000000
2	0.456	25.0	0.000000	0.000000
3	0.685	25.0	0.000000	0.000000
4	0.913	25.0	0.000000	0.000000
...	...	...	...	...
5943	366.000	295.0	0.000077	0.000496
5944	366.000	294.0	0.000077	0.000494
5945	367.000	292.0	0.000077	0.000491
5946	367.000	291.0	0.000076	0.000489
5947	367.000	290.0	0.000076	0.000487
5948 rows × 4 columns

3、数据集可视化

python 复制代码
from os import confstr_names
import matplotlib.pyplot as plt
import seaborn as sns

plt.rcParams['figure.dpi'] = 500
plt.rcParams['savefig.dpi'] = 500

fig, ax = plt.subplots(1, 3, constrained_layout=True, figsize=(14, 3))
sns.lineplot(data=data['Tem1'], ax=ax[0])
sns.lineplot(data=data['CO 1'], ax=ax[1])
sns.lineplot(data=data['Soot 1'], ax=ax[2])
plt.show()
python 复制代码
dataFrame = data.iloc[:, 1:]
dataFrame

4、数据集预处理

python 复制代码
from sklearn.preprocessing import MinMaxScaler

dataFrame = data.iloc[:, 1:].copy()

scaler = MinMaxScaler(feature_range=(0, 1))

for i in ['CO 1', 'Soot 1', 'Tem1']:
    dataFrame[i] = scaler.fit_transform(dataFrame[i].values.reshape(-1, 1))  

dataFrame.shape

(5948, 3)

5、设置X,y

python 复制代码
width_X = 8
width_Y = 1

X = []
y = []

in_start = 0

for _, _ in data.iterrows():
    in_end = in_start + width_X
    out_end = in_end + width_Y
    if out_end < len(dataFrame):
        X_ = np.array(dataFrame.iloc[in_start:in_end, :])
        y_ = np.array(dataFrame.iloc[in_end:out_end, :])
        X.append(X_)
        y.append(y_)
    in_start += 1 
X = np.array(X)
y = np.array(y)

X.shape, y.shape

((5939, 8, 3), (5939, 1, 1))

检查数据集中是否有空值

python 复制代码
print(np.any(np.isnan(X)))
print(np.any(np.isnan(y)))

6、划分数据集

python 复制代码
X_train = torch.tensor(np.array(X[:5000]), dtype=torch.float32)
y_train = torch.tensor(np.array(y[:5000]), dtype=torch. float32)

X_test = torch.tensor(np.array(X[5000:]), dtype=torch.float32)
y_test = torch.tensor(np.array(y[5000:]), dtype=torch. float32)

X_train.shape, y_train.shape

(torch.Size([5000, 8, 3]), torch.Size([5000, 1, 3]))

python 复制代码
from torch.utils.data import TensorDataset, DataLoader
train_dl = DataLoader(TensorDataset(X_train, y_train),
                        batch_size=64,
                        shuffle=False)
test_dl = DataLoader(TensorDataset(X_test, y_test),
                        batch_size=64,
                        shuffle=False)

7、构建模型

python 复制代码
class model_lstm(nn.Module):
    def __init__(self):
        super(model_lstm, self).__init__()

        self.lstm0 = nn.LSTM(input_size=3, hidden_size=320,
                             num_layers=1, batch_first=True)
        
        self.lstm1 = nn.LSTM(input_size=320, hidden_size=320,
                             num_layers=1, batch_first=True)
        self.fc0 = nn.Linear(320, 1)

    def forward(self, x):
        out, hidden1 = self.lstm0(x)
        out, _ = self. lstm1(out, hidden1)
        out = self.fc0(out)
        return out[:, -1:, :]
        #取2个预测值,否则经过1stm会得到8*2个预
model = model_lstm()
model

8、定义训练函数

python 复制代码
import copy
def train(train_dl, model, loss_fn, opt, lr_scheduler=None) :
    size = len(train_dl.dataset)
    num_batches = len(train_dl)
    train_loss = 0 #初始化训练损失和正确率
    for x, y in train_dl:
        x, y = x.to(device), y.to(device)
        #计算预测误差
        pred = model(x) #网络输出
        loss = loss_fn(pred, y) #计算网络输出和真实值之间的差距
        # 反向传播
        opt.zero_grad()#grad属性归零
        loss.backward()# 反向传播
        opt.step()# 每一步自动更新

        #记录Loss
        train_loss += loss. item()
    if lr_scheduler is not None:
        lr_scheduler.step()
        print ("learning rate = {:.5f}". format(opt.param_groups[0]['lr']), end='  ')
    train_loss /= num_batches
    return train_loss

9、定义测试函数

python 复制代码
def test (dataloader, model, loss_fn) :
    size = len(dataloader.dataset) #测试集的大小
    num_batches = len(dataloader)# 批次数目
    
    test_loss = 0
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for x, y in dataloader:
            x, y = x.to(device), y.to(device)
            # 计算loss
            y_pred = model(x)
            loss = loss_fn(y_pred, y)
            test_loss += loss.item()
    test_loss /= num_batches
    return test_loss

10、正式训练

python 复制代码
# 设置GPU训练
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")

#训练模型
model = model_lstm()
model = model.to(device)
loss_fn = nn.MSELoss() #创建损失函数
learn_rate = 1e-1 #学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate, weight_decay=1e-4)
epochs = 50
train_loss = []
test_loss = []
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(opt, epochs, last_epoch=-1)

for epoch in range(epochs):
    model.train()
    epoch_train_loss = train(train_dl, model, loss_fn, opt, lr_scheduler)

    model.eval()
    epoch_test_loss = test(test_dl, model, loss_fn)

    train_loss.append(epoch_train_loss)
    test_loss.append(epoch_test_loss)

    template = ('Epoch: {:2d}, Train loss: {:.5f}, Test loss: {:.5f}')
    print(template.format(epoch+1, epoch_train_loss,epoch_test_loss))
print("="*20, 'Done', "="*70)

11、模型评估- LOSS图

python 复制代码
import matplotlib.pyplot as plt
plt. figure(figsize=(5, 3), dpi=120)

plt.plot(train_loss, label='LSTM Training Loss')
plt.plot(test_loss, label='LSTM Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()

12、调用模型进行训练

python 复制代码
predicted_y_lstm = sc.inverse_transform(model(X_test).detach().numpy().reshape(-1,1))
y_test_1 = sc.inverse_transform(y_test.reshape(-1,1))
y_test_one = [i[0] for i in y_test_1]
predicted_y_lstm_one = [i[0] for i in predicted_y_lstm]
                                        
plt.figure(figsize=(5, 3) , dpi=120)
# 画出真实数据和预测数据的对比曲线
plt.plot(y_test_one[:2000], color='red', label='real_temp')
plt.plot(predicted_y_lstm_one[:2000], color='blue', label='prediction')
plt.title('Title')
plt.xlabel('X')
plt.ylabel('y')
plt.legend ()
plt.show( )
python 复制代码
from sklearn import metrics
'''
RMSE:均方根误差--->对均方误差开方
R2:决定系数,可以简单理解为反映模型拟合优度的重要的统计量
'''
RMSE_lstm = metrics.mean_squared_error(predicted_y_lstm_one, y_test_1)**0.5
R2_lstm = metrics.r2_score(predicted_y_lstm_one, y_test_1)
print('均方根误差:%.5f' % RMSE_lstm)
print('R2: %.5f' % R2_lstm)

均方根误差:7.01314

R2: 0.82595

相关推荐
聆风吟º30 分钟前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys37 分钟前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_567837 分钟前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子40 分钟前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能1 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144871 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile1 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5771 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥1 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
kfyty7251 小时前
集成 spring-ai 2.x 实践中遇到的一些问题及解决方案
java·人工智能·spring-ai