第R4周:LSTM-火灾温度预测

电脑环境:

语言环境:Python 3.8.0

一、代码流程

1、导入包,设置GPU

python 复制代码
import torch.nn.functional as F
import torch.nn as nn
import torch
import numpy as np
import pandas as pd

2、导入数据

python 复制代码
data = pd.read_csv('woodpine2.csv')
data
python 复制代码
	Time	Tem1	CO 1	Soot 1
0	0.000	25.0	0.000000	0.000000
1	0.228	25.0	0.000000	0.000000
2	0.456	25.0	0.000000	0.000000
3	0.685	25.0	0.000000	0.000000
4	0.913	25.0	0.000000	0.000000
...	...	...	...	...
5943	366.000	295.0	0.000077	0.000496
5944	366.000	294.0	0.000077	0.000494
5945	367.000	292.0	0.000077	0.000491
5946	367.000	291.0	0.000076	0.000489
5947	367.000	290.0	0.000076	0.000487
5948 rows × 4 columns

3、数据集可视化

python 复制代码
from os import confstr_names
import matplotlib.pyplot as plt
import seaborn as sns

plt.rcParams['figure.dpi'] = 500
plt.rcParams['savefig.dpi'] = 500

fig, ax = plt.subplots(1, 3, constrained_layout=True, figsize=(14, 3))
sns.lineplot(data=data['Tem1'], ax=ax[0])
sns.lineplot(data=data['CO 1'], ax=ax[1])
sns.lineplot(data=data['Soot 1'], ax=ax[2])
plt.show()
python 复制代码
dataFrame = data.iloc[:, 1:]
dataFrame

4、数据集预处理

python 复制代码
from sklearn.preprocessing import MinMaxScaler

dataFrame = data.iloc[:, 1:].copy()

scaler = MinMaxScaler(feature_range=(0, 1))

for i in ['CO 1', 'Soot 1', 'Tem1']:
    dataFrame[i] = scaler.fit_transform(dataFrame[i].values.reshape(-1, 1))  

dataFrame.shape

(5948, 3)

5、设置X,y

python 复制代码
width_X = 8
width_Y = 1

X = []
y = []

in_start = 0

for _, _ in data.iterrows():
    in_end = in_start + width_X
    out_end = in_end + width_Y
    if out_end < len(dataFrame):
        X_ = np.array(dataFrame.iloc[in_start:in_end, :])
        y_ = np.array(dataFrame.iloc[in_end:out_end, :])
        X.append(X_)
        y.append(y_)
    in_start += 1 
X = np.array(X)
y = np.array(y)

X.shape, y.shape

((5939, 8, 3), (5939, 1, 1))

检查数据集中是否有空值

python 复制代码
print(np.any(np.isnan(X)))
print(np.any(np.isnan(y)))

6、划分数据集

python 复制代码
X_train = torch.tensor(np.array(X[:5000]), dtype=torch.float32)
y_train = torch.tensor(np.array(y[:5000]), dtype=torch. float32)

X_test = torch.tensor(np.array(X[5000:]), dtype=torch.float32)
y_test = torch.tensor(np.array(y[5000:]), dtype=torch. float32)

X_train.shape, y_train.shape

(torch.Size([5000, 8, 3]), torch.Size([5000, 1, 3]))

python 复制代码
from torch.utils.data import TensorDataset, DataLoader
train_dl = DataLoader(TensorDataset(X_train, y_train),
                        batch_size=64,
                        shuffle=False)
test_dl = DataLoader(TensorDataset(X_test, y_test),
                        batch_size=64,
                        shuffle=False)

7、构建模型

python 复制代码
class model_lstm(nn.Module):
    def __init__(self):
        super(model_lstm, self).__init__()

        self.lstm0 = nn.LSTM(input_size=3, hidden_size=320,
                             num_layers=1, batch_first=True)
        
        self.lstm1 = nn.LSTM(input_size=320, hidden_size=320,
                             num_layers=1, batch_first=True)
        self.fc0 = nn.Linear(320, 1)

    def forward(self, x):
        out, hidden1 = self.lstm0(x)
        out, _ = self. lstm1(out, hidden1)
        out = self.fc0(out)
        return out[:, -1:, :]
        #取2个预测值,否则经过1stm会得到8*2个预
model = model_lstm()
model

8、定义训练函数

python 复制代码
import copy
def train(train_dl, model, loss_fn, opt, lr_scheduler=None) :
    size = len(train_dl.dataset)
    num_batches = len(train_dl)
    train_loss = 0 #初始化训练损失和正确率
    for x, y in train_dl:
        x, y = x.to(device), y.to(device)
        #计算预测误差
        pred = model(x) #网络输出
        loss = loss_fn(pred, y) #计算网络输出和真实值之间的差距
        # 反向传播
        opt.zero_grad()#grad属性归零
        loss.backward()# 反向传播
        opt.step()# 每一步自动更新

        #记录Loss
        train_loss += loss. item()
    if lr_scheduler is not None:
        lr_scheduler.step()
        print ("learning rate = {:.5f}". format(opt.param_groups[0]['lr']), end='  ')
    train_loss /= num_batches
    return train_loss

9、定义测试函数

python 复制代码
def test (dataloader, model, loss_fn) :
    size = len(dataloader.dataset) #测试集的大小
    num_batches = len(dataloader)# 批次数目
    
    test_loss = 0
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for x, y in dataloader:
            x, y = x.to(device), y.to(device)
            # 计算loss
            y_pred = model(x)
            loss = loss_fn(y_pred, y)
            test_loss += loss.item()
    test_loss /= num_batches
    return test_loss

10、正式训练

python 复制代码
# 设置GPU训练
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")

#训练模型
model = model_lstm()
model = model.to(device)
loss_fn = nn.MSELoss() #创建损失函数
learn_rate = 1e-1 #学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate, weight_decay=1e-4)
epochs = 50
train_loss = []
test_loss = []
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(opt, epochs, last_epoch=-1)

for epoch in range(epochs):
    model.train()
    epoch_train_loss = train(train_dl, model, loss_fn, opt, lr_scheduler)

    model.eval()
    epoch_test_loss = test(test_dl, model, loss_fn)

    train_loss.append(epoch_train_loss)
    test_loss.append(epoch_test_loss)

    template = ('Epoch: {:2d}, Train loss: {:.5f}, Test loss: {:.5f}')
    print(template.format(epoch+1, epoch_train_loss,epoch_test_loss))
print("="*20, 'Done', "="*70)

11、模型评估- LOSS图

python 复制代码
import matplotlib.pyplot as plt
plt. figure(figsize=(5, 3), dpi=120)

plt.plot(train_loss, label='LSTM Training Loss')
plt.plot(test_loss, label='LSTM Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()

12、调用模型进行训练

python 复制代码
predicted_y_lstm = sc.inverse_transform(model(X_test).detach().numpy().reshape(-1,1))
y_test_1 = sc.inverse_transform(y_test.reshape(-1,1))
y_test_one = [i[0] for i in y_test_1]
predicted_y_lstm_one = [i[0] for i in predicted_y_lstm]
                                        
plt.figure(figsize=(5, 3) , dpi=120)
# 画出真实数据和预测数据的对比曲线
plt.plot(y_test_one[:2000], color='red', label='real_temp')
plt.plot(predicted_y_lstm_one[:2000], color='blue', label='prediction')
plt.title('Title')
plt.xlabel('X')
plt.ylabel('y')
plt.legend ()
plt.show( )
python 复制代码
from sklearn import metrics
'''
RMSE:均方根误差--->对均方误差开方
R2:决定系数,可以简单理解为反映模型拟合优度的重要的统计量
'''
RMSE_lstm = metrics.mean_squared_error(predicted_y_lstm_one, y_test_1)**0.5
R2_lstm = metrics.r2_score(predicted_y_lstm_one, y_test_1)
print('均方根误差:%.5f' % RMSE_lstm)
print('R2: %.5f' % R2_lstm)

均方根误差:7.01314

R2: 0.82595

相关推荐
yu4106213 分钟前
2025年中期大语言模型实力深度剖析
人工智能·语言模型·自然语言处理
feng995203 小时前
技术伦理双轨认证如何重构AI工程师能力评估体系——基于AAIA框架的技术解析与行业实证研究
人工智能·aaif·aaia·iaaai
2301_776681653 小时前
【用「概率思维」重新理解生活】
开发语言·人工智能·自然语言处理
蜡笔小新..3 小时前
从零开始:用PyTorch构建CIFAR-10图像分类模型达到接近1的准确率
人工智能·pytorch·机器学习·分类·cifar-10
富唯智能3 小时前
转运机器人可以绕障吗?
人工智能·智能机器人·转运机器人
视觉语言导航4 小时前
湖南大学3D场景问答最新综述!3D-SQA:3D场景问答助力具身智能场景理解
人工智能·深度学习·具身智能
AidLux4 小时前
端侧智能重构智能监控新路径 | 2025 高通边缘智能创新应用大赛第三场公开课来袭!
大数据·人工智能
引量AI4 小时前
TikTok矩阵运营干货:从0到1打造爆款矩阵
人工智能·矩阵·自动化·tiktok矩阵·海外社媒
Hi-Dison4 小时前
神经网络极简入门技术分享
人工智能·深度学习·神经网络
奋斗者1号5 小时前
机器学习之决策树模型:从基础概念到条件类型详解
人工智能·决策树·机器学习