第R4周:LSTM-火灾温度预测

电脑环境:

语言环境:Python 3.8.0

一、代码流程

1、导入包,设置GPU

python 复制代码
import torch.nn.functional as F
import torch.nn as nn
import torch
import numpy as np
import pandas as pd

2、导入数据

python 复制代码
data = pd.read_csv('woodpine2.csv')
data
python 复制代码
	Time	Tem1	CO 1	Soot 1
0	0.000	25.0	0.000000	0.000000
1	0.228	25.0	0.000000	0.000000
2	0.456	25.0	0.000000	0.000000
3	0.685	25.0	0.000000	0.000000
4	0.913	25.0	0.000000	0.000000
...	...	...	...	...
5943	366.000	295.0	0.000077	0.000496
5944	366.000	294.0	0.000077	0.000494
5945	367.000	292.0	0.000077	0.000491
5946	367.000	291.0	0.000076	0.000489
5947	367.000	290.0	0.000076	0.000487
5948 rows × 4 columns

3、数据集可视化

python 复制代码
from os import confstr_names
import matplotlib.pyplot as plt
import seaborn as sns

plt.rcParams['figure.dpi'] = 500
plt.rcParams['savefig.dpi'] = 500

fig, ax = plt.subplots(1, 3, constrained_layout=True, figsize=(14, 3))
sns.lineplot(data=data['Tem1'], ax=ax[0])
sns.lineplot(data=data['CO 1'], ax=ax[1])
sns.lineplot(data=data['Soot 1'], ax=ax[2])
plt.show()
python 复制代码
dataFrame = data.iloc[:, 1:]
dataFrame

4、数据集预处理

python 复制代码
from sklearn.preprocessing import MinMaxScaler

dataFrame = data.iloc[:, 1:].copy()

scaler = MinMaxScaler(feature_range=(0, 1))

for i in ['CO 1', 'Soot 1', 'Tem1']:
    dataFrame[i] = scaler.fit_transform(dataFrame[i].values.reshape(-1, 1))  

dataFrame.shape

(5948, 3)

5、设置X,y

python 复制代码
width_X = 8
width_Y = 1

X = []
y = []

in_start = 0

for _, _ in data.iterrows():
    in_end = in_start + width_X
    out_end = in_end + width_Y
    if out_end < len(dataFrame):
        X_ = np.array(dataFrame.iloc[in_start:in_end, :])
        y_ = np.array(dataFrame.iloc[in_end:out_end, :])
        X.append(X_)
        y.append(y_)
    in_start += 1 
X = np.array(X)
y = np.array(y)

X.shape, y.shape

((5939, 8, 3), (5939, 1, 1))

检查数据集中是否有空值

python 复制代码
print(np.any(np.isnan(X)))
print(np.any(np.isnan(y)))

6、划分数据集

python 复制代码
X_train = torch.tensor(np.array(X[:5000]), dtype=torch.float32)
y_train = torch.tensor(np.array(y[:5000]), dtype=torch. float32)

X_test = torch.tensor(np.array(X[5000:]), dtype=torch.float32)
y_test = torch.tensor(np.array(y[5000:]), dtype=torch. float32)

X_train.shape, y_train.shape

(torch.Size([5000, 8, 3]), torch.Size([5000, 1, 3]))

python 复制代码
from torch.utils.data import TensorDataset, DataLoader
train_dl = DataLoader(TensorDataset(X_train, y_train),
                        batch_size=64,
                        shuffle=False)
test_dl = DataLoader(TensorDataset(X_test, y_test),
                        batch_size=64,
                        shuffle=False)

7、构建模型

python 复制代码
class model_lstm(nn.Module):
    def __init__(self):
        super(model_lstm, self).__init__()

        self.lstm0 = nn.LSTM(input_size=3, hidden_size=320,
                             num_layers=1, batch_first=True)
        
        self.lstm1 = nn.LSTM(input_size=320, hidden_size=320,
                             num_layers=1, batch_first=True)
        self.fc0 = nn.Linear(320, 1)

    def forward(self, x):
        out, hidden1 = self.lstm0(x)
        out, _ = self. lstm1(out, hidden1)
        out = self.fc0(out)
        return out[:, -1:, :]
        #取2个预测值,否则经过1stm会得到8*2个预
model = model_lstm()
model

8、定义训练函数

python 复制代码
import copy
def train(train_dl, model, loss_fn, opt, lr_scheduler=None) :
    size = len(train_dl.dataset)
    num_batches = len(train_dl)
    train_loss = 0 #初始化训练损失和正确率
    for x, y in train_dl:
        x, y = x.to(device), y.to(device)
        #计算预测误差
        pred = model(x) #网络输出
        loss = loss_fn(pred, y) #计算网络输出和真实值之间的差距
        # 反向传播
        opt.zero_grad()#grad属性归零
        loss.backward()# 反向传播
        opt.step()# 每一步自动更新

        #记录Loss
        train_loss += loss. item()
    if lr_scheduler is not None:
        lr_scheduler.step()
        print ("learning rate = {:.5f}". format(opt.param_groups[0]['lr']), end='  ')
    train_loss /= num_batches
    return train_loss

9、定义测试函数

python 复制代码
def test (dataloader, model, loss_fn) :
    size = len(dataloader.dataset) #测试集的大小
    num_batches = len(dataloader)# 批次数目
    
    test_loss = 0
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for x, y in dataloader:
            x, y = x.to(device), y.to(device)
            # 计算loss
            y_pred = model(x)
            loss = loss_fn(y_pred, y)
            test_loss += loss.item()
    test_loss /= num_batches
    return test_loss

10、正式训练

python 复制代码
# 设置GPU训练
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")

#训练模型
model = model_lstm()
model = model.to(device)
loss_fn = nn.MSELoss() #创建损失函数
learn_rate = 1e-1 #学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate, weight_decay=1e-4)
epochs = 50
train_loss = []
test_loss = []
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(opt, epochs, last_epoch=-1)

for epoch in range(epochs):
    model.train()
    epoch_train_loss = train(train_dl, model, loss_fn, opt, lr_scheduler)

    model.eval()
    epoch_test_loss = test(test_dl, model, loss_fn)

    train_loss.append(epoch_train_loss)
    test_loss.append(epoch_test_loss)

    template = ('Epoch: {:2d}, Train loss: {:.5f}, Test loss: {:.5f}')
    print(template.format(epoch+1, epoch_train_loss,epoch_test_loss))
print("="*20, 'Done', "="*70)

11、模型评估- LOSS图

python 复制代码
import matplotlib.pyplot as plt
plt. figure(figsize=(5, 3), dpi=120)

plt.plot(train_loss, label='LSTM Training Loss')
plt.plot(test_loss, label='LSTM Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()

12、调用模型进行训练

python 复制代码
predicted_y_lstm = sc.inverse_transform(model(X_test).detach().numpy().reshape(-1,1))
y_test_1 = sc.inverse_transform(y_test.reshape(-1,1))
y_test_one = [i[0] for i in y_test_1]
predicted_y_lstm_one = [i[0] for i in predicted_y_lstm]
                                        
plt.figure(figsize=(5, 3) , dpi=120)
# 画出真实数据和预测数据的对比曲线
plt.plot(y_test_one[:2000], color='red', label='real_temp')
plt.plot(predicted_y_lstm_one[:2000], color='blue', label='prediction')
plt.title('Title')
plt.xlabel('X')
plt.ylabel('y')
plt.legend ()
plt.show( )
python 复制代码
from sklearn import metrics
'''
RMSE:均方根误差--->对均方误差开方
R2:决定系数,可以简单理解为反映模型拟合优度的重要的统计量
'''
RMSE_lstm = metrics.mean_squared_error(predicted_y_lstm_one, y_test_1)**0.5
R2_lstm = metrics.r2_score(predicted_y_lstm_one, y_test_1)
print('均方根误差:%.5f' % RMSE_lstm)
print('R2: %.5f' % R2_lstm)

均方根误差:7.01314

R2: 0.82595

相关推荐
MobiusStack12 小时前
Cursor团队最新文章解读丨动态上下文发现,重新定义AI记忆
人工智能
Rui_Freely12 小时前
Vins-Fusion之 相机—IMU在线标定(十一)
人工智能·算法·计算机视觉
沛沛老爹12 小时前
Web开发者5分钟上手:Agent Skills环境搭建与基础使用实战
java·人工智能·llm·llama·rag·agent skills
DeepFlow 零侵扰全栈可观测12 小时前
3分钟定位OA系统GC瓶颈:DeepFlow全栈可观测平台实战解析
大数据·运维·人工智能·云原生·性能优化
想用offer打牌12 小时前
一站式讲清Spring AI Alibaba的OverAllState和RunnableConfig
人工智能·架构·github
生成论实验室12 小时前
生成论之基:“阴阳”作为元规则的重构与证成——基于《易经》与《道德经》的古典重诠与现代显象
人工智能·科技·神经网络·算法·架构
数据分享者12 小时前
对话对齐反馈数据集:12000+高质量人类-助手多轮对话用于RLHF模型训练与评估-人工智能-大语言模型对齐-人类反馈强化学习-训练符合人类期望的对话模型
人工智能·语言模型·自然语言处理
Java后端的Ai之路12 小时前
【人工智能领域】- 卷积神经网络(CNN)深度解析
人工智能·神经网络·cnn
_清欢l13 小时前
Dify+test2data实现自然语言查询数据库
数据库·人工智能·openai
咕噜签名-铁蛋13 小时前
云服务器GPU:释放AI时代的算力引擎
运维·服务器·人工智能