第R4周:LSTM-火灾温度预测

电脑环境:

语言环境:Python 3.8.0

一、代码流程

1、导入包,设置GPU

python 复制代码
import torch.nn.functional as F
import torch.nn as nn
import torch
import numpy as np
import pandas as pd

2、导入数据

python 复制代码
data = pd.read_csv('woodpine2.csv')
data
python 复制代码
	Time	Tem1	CO 1	Soot 1
0	0.000	25.0	0.000000	0.000000
1	0.228	25.0	0.000000	0.000000
2	0.456	25.0	0.000000	0.000000
3	0.685	25.0	0.000000	0.000000
4	0.913	25.0	0.000000	0.000000
...	...	...	...	...
5943	366.000	295.0	0.000077	0.000496
5944	366.000	294.0	0.000077	0.000494
5945	367.000	292.0	0.000077	0.000491
5946	367.000	291.0	0.000076	0.000489
5947	367.000	290.0	0.000076	0.000487
5948 rows × 4 columns

3、数据集可视化

python 复制代码
from os import confstr_names
import matplotlib.pyplot as plt
import seaborn as sns

plt.rcParams['figure.dpi'] = 500
plt.rcParams['savefig.dpi'] = 500

fig, ax = plt.subplots(1, 3, constrained_layout=True, figsize=(14, 3))
sns.lineplot(data=data['Tem1'], ax=ax[0])
sns.lineplot(data=data['CO 1'], ax=ax[1])
sns.lineplot(data=data['Soot 1'], ax=ax[2])
plt.show()
python 复制代码
dataFrame = data.iloc[:, 1:]
dataFrame

4、数据集预处理

python 复制代码
from sklearn.preprocessing import MinMaxScaler

dataFrame = data.iloc[:, 1:].copy()

scaler = MinMaxScaler(feature_range=(0, 1))

for i in ['CO 1', 'Soot 1', 'Tem1']:
    dataFrame[i] = scaler.fit_transform(dataFrame[i].values.reshape(-1, 1))  

dataFrame.shape

(5948, 3)

5、设置X,y

python 复制代码
width_X = 8
width_Y = 1

X = []
y = []

in_start = 0

for _, _ in data.iterrows():
    in_end = in_start + width_X
    out_end = in_end + width_Y
    if out_end < len(dataFrame):
        X_ = np.array(dataFrame.iloc[in_start:in_end, :])
        y_ = np.array(dataFrame.iloc[in_end:out_end, :])
        X.append(X_)
        y.append(y_)
    in_start += 1 
X = np.array(X)
y = np.array(y)

X.shape, y.shape

((5939, 8, 3), (5939, 1, 1))

检查数据集中是否有空值

python 复制代码
print(np.any(np.isnan(X)))
print(np.any(np.isnan(y)))

6、划分数据集

python 复制代码
X_train = torch.tensor(np.array(X[:5000]), dtype=torch.float32)
y_train = torch.tensor(np.array(y[:5000]), dtype=torch. float32)

X_test = torch.tensor(np.array(X[5000:]), dtype=torch.float32)
y_test = torch.tensor(np.array(y[5000:]), dtype=torch. float32)

X_train.shape, y_train.shape

(torch.Size([5000, 8, 3]), torch.Size([5000, 1, 3]))

python 复制代码
from torch.utils.data import TensorDataset, DataLoader
train_dl = DataLoader(TensorDataset(X_train, y_train),
                        batch_size=64,
                        shuffle=False)
test_dl = DataLoader(TensorDataset(X_test, y_test),
                        batch_size=64,
                        shuffle=False)

7、构建模型

python 复制代码
class model_lstm(nn.Module):
    def __init__(self):
        super(model_lstm, self).__init__()

        self.lstm0 = nn.LSTM(input_size=3, hidden_size=320,
                             num_layers=1, batch_first=True)
        
        self.lstm1 = nn.LSTM(input_size=320, hidden_size=320,
                             num_layers=1, batch_first=True)
        self.fc0 = nn.Linear(320, 1)

    def forward(self, x):
        out, hidden1 = self.lstm0(x)
        out, _ = self. lstm1(out, hidden1)
        out = self.fc0(out)
        return out[:, -1:, :]
        #取2个预测值,否则经过1stm会得到8*2个预
model = model_lstm()
model

8、定义训练函数

python 复制代码
import copy
def train(train_dl, model, loss_fn, opt, lr_scheduler=None) :
    size = len(train_dl.dataset)
    num_batches = len(train_dl)
    train_loss = 0 #初始化训练损失和正确率
    for x, y in train_dl:
        x, y = x.to(device), y.to(device)
        #计算预测误差
        pred = model(x) #网络输出
        loss = loss_fn(pred, y) #计算网络输出和真实值之间的差距
        # 反向传播
        opt.zero_grad()#grad属性归零
        loss.backward()# 反向传播
        opt.step()# 每一步自动更新

        #记录Loss
        train_loss += loss. item()
    if lr_scheduler is not None:
        lr_scheduler.step()
        print ("learning rate = {:.5f}". format(opt.param_groups[0]['lr']), end='  ')
    train_loss /= num_batches
    return train_loss

9、定义测试函数

python 复制代码
def test (dataloader, model, loss_fn) :
    size = len(dataloader.dataset) #测试集的大小
    num_batches = len(dataloader)# 批次数目
    
    test_loss = 0
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for x, y in dataloader:
            x, y = x.to(device), y.to(device)
            # 计算loss
            y_pred = model(x)
            loss = loss_fn(y_pred, y)
            test_loss += loss.item()
    test_loss /= num_batches
    return test_loss

10、正式训练

python 复制代码
# 设置GPU训练
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")

#训练模型
model = model_lstm()
model = model.to(device)
loss_fn = nn.MSELoss() #创建损失函数
learn_rate = 1e-1 #学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate, weight_decay=1e-4)
epochs = 50
train_loss = []
test_loss = []
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(opt, epochs, last_epoch=-1)

for epoch in range(epochs):
    model.train()
    epoch_train_loss = train(train_dl, model, loss_fn, opt, lr_scheduler)

    model.eval()
    epoch_test_loss = test(test_dl, model, loss_fn)

    train_loss.append(epoch_train_loss)
    test_loss.append(epoch_test_loss)

    template = ('Epoch: {:2d}, Train loss: {:.5f}, Test loss: {:.5f}')
    print(template.format(epoch+1, epoch_train_loss,epoch_test_loss))
print("="*20, 'Done', "="*70)

11、模型评估- LOSS图

python 复制代码
import matplotlib.pyplot as plt
plt. figure(figsize=(5, 3), dpi=120)

plt.plot(train_loss, label='LSTM Training Loss')
plt.plot(test_loss, label='LSTM Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()

12、调用模型进行训练

python 复制代码
predicted_y_lstm = sc.inverse_transform(model(X_test).detach().numpy().reshape(-1,1))
y_test_1 = sc.inverse_transform(y_test.reshape(-1,1))
y_test_one = [i[0] for i in y_test_1]
predicted_y_lstm_one = [i[0] for i in predicted_y_lstm]
                                        
plt.figure(figsize=(5, 3) , dpi=120)
# 画出真实数据和预测数据的对比曲线
plt.plot(y_test_one[:2000], color='red', label='real_temp')
plt.plot(predicted_y_lstm_one[:2000], color='blue', label='prediction')
plt.title('Title')
plt.xlabel('X')
plt.ylabel('y')
plt.legend ()
plt.show( )
python 复制代码
from sklearn import metrics
'''
RMSE:均方根误差--->对均方误差开方
R2:决定系数,可以简单理解为反映模型拟合优度的重要的统计量
'''
RMSE_lstm = metrics.mean_squared_error(predicted_y_lstm_one, y_test_1)**0.5
R2_lstm = metrics.r2_score(predicted_y_lstm_one, y_test_1)
print('均方根误差:%.5f' % RMSE_lstm)
print('R2: %.5f' % R2_lstm)

均方根误差:7.01314

R2: 0.82595

相关推荐
2401_8974446413 分钟前
用AI技术提升Flutter开发效率:ScriptEcho的力量
前端·人工智能·flutter
EDPJ44 分钟前
(2023|NIPS,LLaVA-Med,生物医学 VLM,GPT-4 生成自指导指令跟随数据集,数据对齐,指令调优)
人工智能·深度学习·计算机视觉·视觉语言模型
zaim11 小时前
计算机的错误计算(二百零七)
人工智能·ai·大模型·llm·错误·误差/error·反余切/arccot
nwsuaf_huasir2 小时前
S变换matlab实现
人工智能·算法·matlab
计算机科研之友(Friend)2 小时前
海外招聘丨卡尔斯塔德大学—互联网隐私和安全副高级讲师
图像处理·人工智能·安全·计算机视觉·数据挖掘·机器人
EasyNVR2 小时前
视频转码对画质有影响吗?视频融合平台EasyCVR支持哪些转码格式?
人工智能·音视频
Zerol_Yan2 小时前
sklearn-逻辑回归-制作评分卡
人工智能·逻辑回归·sklearn
TMT星球2 小时前
三线结构光避障远近有度,石头自清洁扫拖机器人G30上市
人工智能·机器人
Jamence2 小时前
超大规模分类(三):KNN softmax
人工智能·深度学习·机器学习·分类
微学AI2 小时前
GPU算力平台|在GPU算力平台部署LLama3大模型的详细教程
服务器·人工智能·gpu算力