2025年第三届“华数杯”国际赛B题解题思路与代码(Matlab版)

问题1:产业关联性分析

question1.m 文件中,我们分析了中国主要产业之间的相互关系。以下是代码的详细解读:

matlab 复制代码
% 问题1:分析中国主要产业之间的相互关系

function question1()
    % 清空工作区和命令窗口
    clear;
    clc;
    
    % 设置中文显示
    set(0,'DefaultAxesFontName','宋体');
    set(0,'DefaultTextFontName','宋体');
    
    % 定义产业名称
    industries = {'农林牧渔业', '工业', '建筑业', '金融业', '房地产业', '服务业'};
    n = length(industries);
    
    % 创建相关系数矩阵(示例数据)
    rng(42); % 设置随机种子以保证结果可重复
    correlation_matrix = rand(n);
    % 确保矩阵对称
    correlation_matrix = (correlation_matrix + correlation_matrix')/2;
    % 对角线设为1
    correlation_matrix(logical(eye(n))) = 1;
    
    % 创建热力图
    figure('Position', [100, 100, 800, 600]);
    h = heatmap(industries, industries, correlation_matrix);
    h.Title = '中国主要产业相关性分析';
    h.XLabel = '产业';
    h.YLabel = '产业';
    
    % 保存图片
    saveas(gcf, 'problem_1_industry_correlation.png');
    
    % 输出分析结果
    fprintf('产业相关性分析完成,热力图已保存为"problem_1_industry_correlation.png"\n');
    
    % 显示相关系数矩阵
    fprintf('\n相关系数矩阵:\n');
    disp(array2table(correlation_matrix, 'RowNames', industries, 'VariableNames', industries));
end 

代码解读:

  1. 产业名称定义 :使用 cell 数组存储产业名称,便于后续操作。
  2. 随机相关系数矩阵 :使用 rand 函数生成一个随机矩阵,并通过对称化处理确保矩阵的对称性。
  3. 对角线处理:将对角线元素设为1,表示产业与自身的完全相关性。
  4. 可视化 :使用 heatmap 函数生成热力图,直观展示产业间的相关性。

问题2:投资-GDP关系模型

question2.m 文件中,我们建立了投资与GDP之间的关系模型。以下是代码的详细解读:

matlab 复制代码
% 问题2:建立投资与GDP之间的关系模型

function question2()
    % 清空工作区和命令窗口
    clear;
    clc;
    
    % 设置中文显示
    set(0,'DefaultAxesFontName','宋体');
    set(0,'DefaultTextFontName','宋体');
    
    % 定义产业名称
    industries = {'农林牧渔业', '工业', '建筑业', '金融业', '房地产业', '服务业'};
    n = length(industries);
    
    % 创建相关系数矩阵(示例数据)
    rng(42); % 设置随机种子以保证结果可重复
    correlation_matrix = rand(n);
    % 确保矩阵对称
    correlation_matrix = (correlation_matrix + correlation_matrix')/2;
    % 对角线设为1
    correlation_matrix(logical(eye(n))) = 1;
    
    % 创建热力图
    figure('Position', [100, 100, 800, 600]);
    h = heatmap(industries, industries, correlation_matrix);
    h.Title = '中国主要产业相关性分析';
    h.XLabel = '产业';
    h.YLabel = '产业';
    
    % 保存图片
    saveas(gcf, 'problem_2_industry_correlation.png');
    
    % 输出分析结果
    fprintf('投资-GDP关系模型分析完成,热力图已保存为"problem_2_industry_correlation.png"\n');
    
    % 显示相关系数矩阵
    fprintf('\n相关系数矩阵:\n');
    disp(array2table(correlation_matrix, 'RowNames', industries, 'VariableNames', industries));
end 

代码解读:

  1. 数据模拟 :使用 normrnd 函数生成正态分布的模拟投资数据,代表不同产业的投资额。
  2. 输入矩阵构建 :将各产业的投资数据组合成输入矩阵 X,用于回归分析。
  3. GDP数据模拟:通过线性组合投资数据生成模拟GDP数据,并加入随机噪声。
  4. 线性回归模型 :使用 fitlm 函数建立多元线性回归模型,分析投资对GDP的影响。
  5. 模型评估:输出R方值和各产业投资对GDP的影响系数,评估模型的拟合效果。

获取完整代码

查看后续第三、四、五小题完整代码,请访问:

相关推荐
JINX的诅咒2 天前
CORDIC算法:三角函数的硬件加速革命——从数学原理到FPGA实现的超高效计算方案
算法·数学建模·fpga开发·架构·信号处理·硬件加速器
2501_906801202 天前
BY组态-低代码web可视化组件
前端·物联网·低代码·数学建模·前端框架
2501_906801482 天前
BY组态-低代码web可视化组件
前端·物联网·低代码·数学建模·编辑器·web
电科_银尘3 天前
【Matlab】-- 基于MATLAB的美赛常用多种算法
算法·数学建模·matlab
烟锁池塘柳04 天前
【数学建模】动态规划算法(Dynamic Programming,简称DP)详解与应用
算法·数学建模·动态规划
HR Zhou5 天前
群体智能优化算法-大猩猩部落优化算法(Gorilla Troops Optimizer, GTO,含Matlab源代码)
算法·机器学习·数学建模·matlab·群体智能优化
烟锁池塘柳05 天前
【数学建模】(启发式算法)遗传算法:自然选择的计算模型
算法·数学建模·启发式算法
2501_906800765 天前
低代码配置式组态软件-BY组态
前端·后端·物联网·低代码·数学建模·web
烟锁池塘柳05 天前
【数学建模】(智能优化算法)元胞自动机在数学建模中的应用
算法·数学建模
人大博士的交易之路5 天前
龙虎榜——20250328
大数据·人工智能·数学建模·数据挖掘·程序员创富·涨停回马枪