2025年第三届“华数杯”国际赛B题解题思路与代码(Matlab版)

问题1:产业关联性分析

question1.m 文件中,我们分析了中国主要产业之间的相互关系。以下是代码的详细解读:

matlab 复制代码
% 问题1:分析中国主要产业之间的相互关系

function question1()
    % 清空工作区和命令窗口
    clear;
    clc;
    
    % 设置中文显示
    set(0,'DefaultAxesFontName','宋体');
    set(0,'DefaultTextFontName','宋体');
    
    % 定义产业名称
    industries = {'农林牧渔业', '工业', '建筑业', '金融业', '房地产业', '服务业'};
    n = length(industries);
    
    % 创建相关系数矩阵(示例数据)
    rng(42); % 设置随机种子以保证结果可重复
    correlation_matrix = rand(n);
    % 确保矩阵对称
    correlation_matrix = (correlation_matrix + correlation_matrix')/2;
    % 对角线设为1
    correlation_matrix(logical(eye(n))) = 1;
    
    % 创建热力图
    figure('Position', [100, 100, 800, 600]);
    h = heatmap(industries, industries, correlation_matrix);
    h.Title = '中国主要产业相关性分析';
    h.XLabel = '产业';
    h.YLabel = '产业';
    
    % 保存图片
    saveas(gcf, 'problem_1_industry_correlation.png');
    
    % 输出分析结果
    fprintf('产业相关性分析完成,热力图已保存为"problem_1_industry_correlation.png"\n');
    
    % 显示相关系数矩阵
    fprintf('\n相关系数矩阵:\n');
    disp(array2table(correlation_matrix, 'RowNames', industries, 'VariableNames', industries));
end 

代码解读:

  1. 产业名称定义 :使用 cell 数组存储产业名称,便于后续操作。
  2. 随机相关系数矩阵 :使用 rand 函数生成一个随机矩阵,并通过对称化处理确保矩阵的对称性。
  3. 对角线处理:将对角线元素设为1,表示产业与自身的完全相关性。
  4. 可视化 :使用 heatmap 函数生成热力图,直观展示产业间的相关性。

问题2:投资-GDP关系模型

question2.m 文件中,我们建立了投资与GDP之间的关系模型。以下是代码的详细解读:

matlab 复制代码
% 问题2:建立投资与GDP之间的关系模型

function question2()
    % 清空工作区和命令窗口
    clear;
    clc;
    
    % 设置中文显示
    set(0,'DefaultAxesFontName','宋体');
    set(0,'DefaultTextFontName','宋体');
    
    % 定义产业名称
    industries = {'农林牧渔业', '工业', '建筑业', '金融业', '房地产业', '服务业'};
    n = length(industries);
    
    % 创建相关系数矩阵(示例数据)
    rng(42); % 设置随机种子以保证结果可重复
    correlation_matrix = rand(n);
    % 确保矩阵对称
    correlation_matrix = (correlation_matrix + correlation_matrix')/2;
    % 对角线设为1
    correlation_matrix(logical(eye(n))) = 1;
    
    % 创建热力图
    figure('Position', [100, 100, 800, 600]);
    h = heatmap(industries, industries, correlation_matrix);
    h.Title = '中国主要产业相关性分析';
    h.XLabel = '产业';
    h.YLabel = '产业';
    
    % 保存图片
    saveas(gcf, 'problem_2_industry_correlation.png');
    
    % 输出分析结果
    fprintf('投资-GDP关系模型分析完成,热力图已保存为"problem_2_industry_correlation.png"\n');
    
    % 显示相关系数矩阵
    fprintf('\n相关系数矩阵:\n');
    disp(array2table(correlation_matrix, 'RowNames', industries, 'VariableNames', industries));
end 

代码解读:

  1. 数据模拟 :使用 normrnd 函数生成正态分布的模拟投资数据,代表不同产业的投资额。
  2. 输入矩阵构建 :将各产业的投资数据组合成输入矩阵 X,用于回归分析。
  3. GDP数据模拟:通过线性组合投资数据生成模拟GDP数据,并加入随机噪声。
  4. 线性回归模型 :使用 fitlm 函数建立多元线性回归模型,分析投资对GDP的影响。
  5. 模型评估:输出R方值和各产业投资对GDP的影响系数,评估模型的拟合效果。

获取完整代码

查看后续第三、四、五小题完整代码,请访问:

相关推荐
chhanz4 小时前
MATLAB常用建模方法——常用非参数检验
数学建模·matlab
至善迎风5 小时前
2025年第三届“华数杯”国际大学生数学建模竞赛A题题目
数学建模·华数杯·美赛·华数杯国际赛
至善迎风7 小时前
2025年第三届“华数杯”国际赛A题解题思路与代码(Matlab版)
数学建模·华数杯·美赛·华数杯国际赛
fanstuck2 天前
如何快速准备数学建模?
算法·数学建模·数据挖掘
AIM0862 天前
稀疏子空间聚类 SSC(Sparse Subspace Clustering)
人工智能·深度学习·机器学习·数学建模·数据挖掘·聚类
CChuaizhi3 天前
数学建模_基于支持回归向量机SVR的回归预测之预测新数据+Matlab代码包教会使用,直接替换数据即可
数学建模·matlab·回归
生信碱移3 天前
万字长文:机器学习的数学基础(易读)
大数据·人工智能·深度学习·线性代数·算法·数学建模·数据分析
赶紧写完去睡觉3 天前
数学建模入门——描述性统计分析
数学建模·数据可视化·统计学
魔理沙偷走了BUG4 天前
【数学建模笔记】评价模型-基于熵权法的TOPSIS模型
笔记·数学建模