论文笔记:FDTI: Fine-grained Deep Traffic Inference with Roadnet-enriched Graph

2023 PKDD

1 intro

  • 一些交通预测下游任务对预测结果的粒度非常敏感,例如交通信号控制、拥堵发现和路径规划
    • 然而,现有的深度学习方法主要关注粗粒度的交通数据,而在细粒度设置下利用深度学习方法解决交通预测任务的研究仍未被探索
  • 在细粒度设置下,交通流量由交通信号决定
    • 先前的研究忽略了细粒度场景下节点之间显著的高度动态相关性,而是使用静态图/数据驱动图来聚合节点的知识
  • 但由于交通信号引起的高度动态相关性,空间邻居之间的交通流量并不相似
    • 细粒度交通数据表现为非平滑性,这在本文定义的空间-时间平均距离(STMAD)指标中得到了评估
    • 先前的方法在粗粒度平滑数据集上表现良好。然而,由于平滑性是图卷积网络(GCN)设计的本质特性,实验表明,现有方法在非平滑的细粒度数据上仍然进行平滑预测,这导致了较大的误差。

------>论文提出了一种名为**细粒度深度交通推断模型(FDTI)的方法**

是首个完成城市级细粒度交通预测的研究

2 问题定义

2.1 交通流动图

  • 将交通系统建模为一个交通流动图 G=(V,E)
    • V 是包含 N个交通流动的集合
      • 每个交通流动 vi 是具有相同运动方向 di∈{左转,直行,右转} 的车道集合。
    • E 是交通流动之间的连接集合
      • 每条有向边eij 表示从交通流动 vi到交通流动 vj的连接

2.2 交通状态

2.3 道路网络增强特征

2.4 问题定义

2.4.1 一步推断

2.4.2 Q步推断

3 模型

3.1 构建细粒度交通时空图(FTSTG)

(虚线不算FTSTG的边)

3.2 主要方法

4 实验

4.1 数据集

4.2 实验设计

4.3 结果

相关推荐
Siyu_Zhu19 小时前
可解释性AI 综述《Explainable AI for Industrial Fault Diagnosis: A Systematic Review》
论文阅读
寻丶幽风1 天前
论文阅读笔记——双流网络
论文阅读·笔记·深度学习·视频理解·双流网络
学术交流1 天前
2025年金融创新、区块链与信息技术国际会议(FRCIT 2025 2025)
论文阅读·金融·区块链·论文笔记
钟屿2 天前
Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise论文阅读
论文阅读·图像处理·人工智能·深度学习·计算机视觉
0x2112 天前
[论文阅读]ControlNET: A Firewall for RAG-based LLM System
论文阅读
0x2112 天前
[论文阅读]Formalizing and Benchmarking Prompt Injection Attacks and Defenses
论文阅读·prompt
爱补鱼的猫猫3 天前
24、DeepSeek-V3论文笔记
论文阅读
爱补鱼的猫猫3 天前
19、DeepSeek LLM论文笔记
论文阅读
不是吧这都有重名3 天前
[论文阅读]Deeply-Supervised Nets
论文阅读·人工智能·算法·大语言模型
s1ckrain4 天前
【论文阅读】FreePCA
论文阅读·计算机视觉·aigc