PyTorch环境配置常见报错的解决办法

目标

小白在最基础的环境配置里一般都会出现许多问题。

这里把一些常见的问题分享出来。希望可以节省大家一些时间。

最终目标是可以在cmd虚拟环境里进入jupyter notebook,new的时候有对应的环境,并且可以跑通所有的import code。

第一步: 在anaconda中创建一个专门的虚拟环境

bash 复制代码
conda create -n py37_torch131 python=3.7

第二步:激活环境

bash 复制代码
# 激活环境
source activate py37_torch131

## 如果source报错,改用conda 
conda activate py37_torch131

# 退出环境的指令
deactivate

以上两步一般都不会出现什么问题。

第三步:在虚拟环境下安装pytorch1.3.1及各种依赖库

原始安装代码:

bash 复制代码
# 安装pytorch1.3.1
conda install pytorch=1.3.1 torchvision cudatoolkit=10.0

# 安装其他依赖库
pip install jupyter tqdm opencv-python matplotlib pandas

这一步可能会遇到非常多的安装的问题。

安装的时候可能会遇到:

① channel找不到的,报错为 The following packages are not available from current channels;

②也可能文件比较大,或者下载速度非常慢。

此外,conda的安装目前不支持断点续传,一旦卡住了或者超时,就需要重头再来。

这里提供一种针对各种安装问题的通用解决方案: **尽量都通过清华源的镜像下载安装。**相比速度很快。

bash 复制代码
# 先添加清华的channels

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/

conda config --set show_channel_urls yes

# 安装pytorch
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
# conda install pytorch torchvision cudatoolkit=10.0 # 不指定版本的话,默认下载最新的,这样的话再baseline里可能会遇到需要将target类型转为long的报错提示

conda install pytorch=1.3.1 torchvision cudatoolkit=10.0


# 安装其他依赖包
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple jupyter tqdm opencv-python matplotlib pandas

如果要安装其他包,可以先网上搜索下清华镜像是否有,一般都会有的。然后尽量通过清华镜像资源下载。

第四步:启动notebook

bash 复制代码
jupyter-notebook
jupyter notebook
# 以上两种方式都可以启动notebook

本来要开始愉快的代码之旅了,结果发现在notebook里new的时候,并没有我们刚刚创建的那个虚拟环境。

原因是缺少nb_conda插件,以及没有导入虚拟环境。

bash 复制代码
# 安装nb_conda插件
conda install nb_conda
conda install ipykernel
  
# 导入虚拟环境
python -m ipykernel install --user --name py37_torch131 --display-name "py37_cv"

# 最后启动jupyter notebook
jupyter notebook

总结

要敲的指令按顺序如下:

bash 复制代码
conda create -n py37_torch131 python=3.7 
conda activate py37_torch131

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
 

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda install pytorch=1.3.1 torchvision cudatoolkit=10.0
   
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple jupyter tqdm opencv-python matplotlib pandas


conda install nb_conda
conda install ipykernel


python -m ipykernel install --user --name py37_torch131 --display-name "py37_cv"
jupyter notebook

在notebook里new file的时候记得选择 py37_cv那个环境。

最终效果如下:

相关推荐
兩尛10 分钟前
Web后端开发总结(day14)
java·开发语言
XianxinMao11 分钟前
GOT-OCR2.0:突破性端到端架构与高精度文本识别的技术创新
人工智能·深度学习
电子云与长程纠缠13 分钟前
UE5中制作地形材质
开发语言·缓存·ue5·编辑器·材质
froginwe1116 分钟前
《DOM NodeList》
开发语言
取个名字真难呐24 分钟前
21、Transformer Masked loss原理精讲及其PyTorch逐行实现
人工智能·pytorch·python·深度学习·矩阵·transformer
lly20240625 分钟前
XML 解析器:深入解析与高效应用
开发语言
:-)35 分钟前
美化IDE之修改IDEA启动界面logo图片
java·ide·python·pycharm·intellij-idea
矮油0_o1 小时前
parallel programming in CUDA C(GPU并行程序实现数组求和 & Julia set)
c语言·开发语言·cdua
新加坡内哥谈技术1 小时前
CES 2025 NVIDIA Project DIGITS 与更多突破性发布全解析
人工智能·科技·深度学习·自动化·生活
泡芙萝莉酱1 小时前
省级-农业科技创新(农业科技专利)数据(2010-2022年)-社科数据
大数据·人工智能·科技·深度学习·数据挖掘·毕业论文