elasticsearch中IK分词器

1、什么是IK分词器

ElasticSearch 几种常用分词器如下:

分词器 分词方式
StandardAnalyzer 单字分词
CJKAnalyzer 二分法
IKAnalyzer 词库分词

分词∶即把一段中文或者别的划分成一个个的关键字,我们在搜索时候会把自己的信息进行分词,会把数据库中或者索引库中的数据进行分词,然后进行一个匹配操作,默认的中文分词是将每个字看成一个词,比如"我爱中国"会被分为"我""爱""中""国",这显然是不符合要求的,所以我们需要安装中文分词器ik来解决这个问题。

IK提供了两个分词算法:ik_smart和ik_max_word,其中ik smart为最少切分,ik_max_word为最细粒度划分!

ik_max_word: 会将文本做最细粒度的拆分,比如会将"中华人民共和国国歌"拆分为"中华人民共和国,中华人民,中华,华人,人民共和国,人民,人,民,共和国,共和,和,国国,国歌",会穷尽各种可能的组合;ik_smart: 会做最粗粒度的拆分,比如会将"中华人民共和国国歌"拆分为"中华人民共和国,国歌"。

2、下载IK分词器

下载地址:IK分词器

下载完毕之后在虚拟机进行部署

首先,查看之前安装的Elasticsearch容器的plugins数据卷目录:

docker volume inspect es-plugins

结果如下:

[
    {
        "CreatedAt": "2024-11-06T10:06:34+08:00",
        "Driver": "local",
        "Labels": null,
        "Mountpoint": "/var/lib/docker/volumes/es-plugins/_data",
        "Name": "es-plugins",
        "Options": null,
        "Scope": "local"
    }
]

可以看到elasticsearch的插件挂载到了/var/lib/docker/volumes/es-plugins/_data这个目录。我们需要把IK分词器上传至这个目录。

将刚刚下载的压缩包解压后,就可以放入该地址的文件夹中

然后上传至虚拟机的/var/lib/docker/volumes/es-plugins/_data这个目录:

最后,重启es容器:

docker restart es

3、使用IK分词器

IK分词器包含两种模式:

  • ik_smart:智能语义切分

  • ik_max_word:最细粒度切分

我们在Kibana的DevTools上来测试分词器,首先测试Elasticsearch官方提供的标准分词器:

POST /_analyze
{
  "analyzer": "standard",
  "text": "黑马程序员学习java太棒了"
}

结果如下:

{
  "tokens" : [
    {
      "token" : "黑",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "<IDEOGRAPHIC>",
      "position" : 0
    },
    {
      "token" : "马",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "<IDEOGRAPHIC>",
      "position" : 1
    },
    {
      "token" : "程",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "<IDEOGRAPHIC>",
      "position" : 2
    },
    {
      "token" : "序",
      "start_offset" : 3,
      "end_offset" : 4,
      "type" : "<IDEOGRAPHIC>",
      "position" : 3
    },
    {
      "token" : "员",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "<IDEOGRAPHIC>",
      "position" : 4
    },
    {
      "token" : "学",
      "start_offset" : 5,
      "end_offset" : 6,
      "type" : "<IDEOGRAPHIC>",
      "position" : 5
    },
    {
      "token" : "习",
      "start_offset" : 6,
      "end_offset" : 7,
      "type" : "<IDEOGRAPHIC>",
      "position" : 6
    },
    {
      "token" : "java",
      "start_offset" : 7,
      "end_offset" : 11,
      "type" : "<ALPHANUM>",
      "position" : 7
    },
    {
      "token" : "太",
      "start_offset" : 11,
      "end_offset" : 12,
      "type" : "<IDEOGRAPHIC>",
      "position" : 8
    },
    {
      "token" : "棒",
      "start_offset" : 12,
      "end_offset" : 13,
      "type" : "<IDEOGRAPHIC>",
      "position" : 9
    },
    {
      "token" : "了",
      "start_offset" : 13,
      "end_offset" : 14,
      "type" : "<IDEOGRAPHIC>",
      "position" : 10
    }
  ]
}

可以看到,标准分词器智能1字1词条,无法正确对中文做分词。

我们再测试IK分词器:

POST /_analyze
{
  "analyzer": "ik_smart",
  "text": "黑马程序员学习java太棒了"
}

{
  "tokens" : [
    {
      "token" : "黑马",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "程序员",
      "start_offset" : 2,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "学习",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "java",
      "start_offset" : 7,
      "end_offset" : 11,
      "type" : "ENGLISH",
      "position" : 3
    },
    {
      "token" : "太棒了",
      "start_offset" : 11,
      "end_offset" : 14,
      "type" : "CN_WORD",
      "position" : 4
    }
  ]
}

3.1、拓展词典

随着互联网的发展,"造词运动"也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:"泰裤辣","传智播客" 等。

IK分词器无法对这些词汇分词,测试一下:

POST /_analyze
{
  "analyzer": "ik_max_word",
  "text": "传智播客开设大学,真的泰裤辣!"
}

结果:

{
  "tokens" : [
    {
      "token" : "传",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "CN_CHAR",
      "position" : 0
    },
    {
      "token" : "智",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "CN_CHAR",
      "position" : 1
    },
    {
      "token" : "播",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "CN_CHAR",
      "position" : 2
    },
    {
      "token" : "客",
      "start_offset" : 3,
      "end_offset" : 4,
      "type" : "CN_CHAR",
      "position" : 3
    },
    {
      "token" : "开设",
      "start_offset" : 4,
      "end_offset" : 6,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "大学",
      "start_offset" : 6,
      "end_offset" : 8,
      "type" : "CN_WORD",
      "position" : 5
    },
    {
      "token" : "真的",
      "start_offset" : 9,
      "end_offset" : 11,
      "type" : "CN_WORD",
      "position" : 6
    },
    {
      "token" : "泰",
      "start_offset" : 11,
      "end_offset" : 12,
      "type" : "CN_CHAR",
      "position" : 7
    },
    {
      "token" : "裤",
      "start_offset" : 12,
      "end_offset" : 13,
      "type" : "CN_CHAR",
      "position" : 8
    },
    {
      "token" : "辣",
      "start_offset" : 13,
      "end_offset" : 14,
      "type" : "CN_CHAR",
      "position" : 9
    }
  ]
}

可以看到,传智播客泰裤辣都无法正确分词。

所以要想正确分词,IK分词器的词库也需要不断的更新,IK分词器提供了扩展词汇的功能。

1)打开IK分词器config目录:

注意,如果采用在线安装的通过,默认是没有config目录的,需要把课前资料提供的ik下的config上传至对应目录。

2)在IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典-->
        <entry key="ext_dict">ext.dic</entry>
</properties>

3)在IK分词器的config目录新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改

传智播客
泰裤辣

4)重启elasticsearch

docker restart es

# 查看 日志

docker logs -f elasticsearch

再次测试,可以发现传智播客泰裤辣都正确分词了:

{
  "tokens" : [
    {
      "token" : "传智播客",
      "start_offset" : 0,
      "end_offset" : 4,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "开设",
      "start_offset" : 4,
      "end_offset" : 6,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "大学",
      "start_offset" : 6,
      "end_offset" : 8,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "真的",
      "start_offset" : 9,
      "end_offset" : 11,
      "type" : "CN_WORD",
      "position" : 3
    },
    {
      "token" : "泰裤辣",
      "start_offset" : 11,
      "end_offset" : 14,
      "type" : "CN_WORD",
      "position" : 4
    }
  ]
}

4、总结

分词器的作用是什么?

  • 创建倒排索引时,对文档分词

  • 用户搜索时,对输入的内容分词

IK分词器有几种模式?

  • ik_smart:智能切分,粗粒度

  • ik_max_word:最细切分,细粒度

IK分词器如何拓展词条?如何停用词条?

  • 利用config目录的IkAnalyzer.cfg.xml文件添加拓展词典和停用词典

  • 在词典中添加拓展词条或者停用词条

相关推荐
十六ᵛᵃᵉ5 分钟前
day07_Spark SQL
大数据·sql·spark
W_Meng_H26 分钟前
ElasticSearch-Nested 类型与 Object 类型的区别
大数据·elasticsearch·搜索引擎
花开了¥27 分钟前
Elasticsearch入门学习
elasticsearch·搜索引擎
要养家的程序猿28 分钟前
ElasticSearch在Windows环境搭建&测试
大数据·elasticsearch·搜索引擎
拓端研究室29 分钟前
【专题】2025年节日营销趋势洞察报告汇总PDF洞察(附原数据表)
大数据
摇光~1 小时前
【数据仓库】— 5分钟浅谈数据仓库(适合新手)从理论到实践
大数据·数据库·数据仓库·spark·etl
yuanbenshidiaos1 小时前
【大数据】机器学习-----最开始的引路
大数据·人工智能·机器学习
weixin_307779133 小时前
PySpark用sort-merge join解决数据倾斜的完整案例
大数据·python·spark
字节跳动数据平台3 小时前
“数据飞轮” 理念焕新,助力 2025 企业数智化发展
大数据
Faith_xzc5 小时前
【Apache Doris】周FAQ集锦:第 29 期
大数据·数据库·开源·apache·数据库开发·doris