大数据学习(34)-mapreduce详解

&&大数据学习&&
🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门

💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


mapreduce本身工作原理相对于spark来说简单很多,计算过程大概包括map阶段和reduce阶段。

一、任务启动阶段

  1. Client用户端发起请求
    • MapReduce作业的启动由Client端(即用户或应用程序)发起。Client端会提交作业请求,包括作业的配置信息、输入数据的位置等。
  2. 资源申请与分配
    • YarnRunner接受Client端的请求,并向ResourceManager申请所需的资源。
    • ResourceManager检索当前集群的资源情况,为作业分配资源路径,并通知YarnRunner。
  3. 作业分片与MRAppMaster启动
    • YarnRunner根据输入数据的大小和集群的配置,对输入数据进行分片(split),每个分片将作为一个Map任务的输入。
    • YarnRunner申请启动MRAppMaster,该组件负责监控和管理整个作业的执行过程。
  4. MapTask启动
    • ResourceManager根据分片和作业信息,选择数据所在的节点启动MapTask。MapTask在数据所在的节点上运行,以减少数据传输的开销。

二、Map阶段

  1. 数据读取与处理
    • 每个MapTask读取自己节点上的分片数据,并进行处理。处理过程包括数据的split、map函数的执行、数据的分区等。
    • 在map函数中,输入数据被转换为键值对(key-value pair)的形式,并经过自定义的map逻辑处理,输出新的键值对。
  2. 数据写入环形缓冲区
    • MapTask的输出结果首先写入一个内存环形缓冲区。当缓冲区中的数据量达到一定的阈值时(如80%),会触发一个溢写(spill)操作,将数据写入磁盘。
  3. 数据排序与合并
    • 在溢写过程中,MapReduce框架会对数据进行排序和合并操作。排序是基于key进行的,以确保相同key的数据能够聚集在一起。
    • 合并操作是将多个溢写文件合并为一个有序的文件,以减少后续处理的数据量。

三、Shuffle阶段

  1. 数据分发
    • Shuffle阶段负责将MapTask的输出结果分发到相应的ReduceTask。分发过程是基于key的分区进行的,确保相同key的数据被发送到同一个ReduceTask。
  2. 数据排序与归并
    • 在ReduceTask端,接收到的数据会进行进一步的排序和归并操作,以确保数据的正确性和有序性。

四、Reduce阶段

  1. ReduceTask启动
    • 当MapTask全部完成后,MRAppMaster会申请启动ReduceTask。ReduceTask的数量由作业的配置决定,通常与Reduce的输出结果数量相关。
  2. 数据处理与输出
    • ReduceTask对接收到的数据进行处理,包括合并相同key的value列表、执行自定义的reduce逻辑等。
    • 处理完成后,ReduceTask将结果写入到HDFS或其他存储系统中。

五、任务结束阶段

  1. 监控与汇报
    • MRAppMaster持续监控每个Reduce节点的执行情况,并在所有任务完成后向上汇报。
  2. 资源释放与任务结束
    • ResourceManager注销MRAppMaster,并释放其占用的资源。YarnRunner接收任务执行完成的信息,并返回给Client端。Client端接受信息后,表示作业执行完成。

MapReduce的工作流程是一个复杂而有序的过程,涉及多个组件和阶段的协同工作。通过合理的配置和优化,MapReduce可以高效地处理大规模数据,满足各种数据处理和分析的需求。

相关推荐
小朋友,你是否有很多问号?1 小时前
spark11-sparkSQL 实现wordcount
spark
IT研究室1 天前
大数据毕业设计选题推荐-基于大数据的国家药品采集药品数据可视化分析系统-Spark-Hadoop-Bigdata
大数据·hadoop·信息可视化·spark·毕业设计·数据可视化·bigdata
道一云黑板报1 天前
Spark生态全景图:图计算与边缘计算的创新实践
大数据·性能优化·spark·边缘计算
Lansonli1 天前
大数据Spark(六十三):RDD-Resilient Distributed Dataset
大数据·分布式·spark
BYSJMG1 天前
计算机毕业设计选题:基于Spark+Hadoop的健康饮食营养数据分析系统【源码+文档+调试】
大数据·vue.js·hadoop·分布式·spark·django·课程设计
武子康1 天前
大数据-92 Spark 深入解析 Spark Standalone 模式:组件构成、提交流程与性能优化
大数据·后端·spark
像豆芽一样优秀1 天前
Hive和Flink数据倾斜问题
大数据·数据仓库·hive·hadoop·flink
青云交1 天前
Java 大视界 -- 基于 Java 的大数据分布式存储在智慧城市时空大数据管理与应用中的创新实践(408)
java·hdfs·flink·智慧城市·hbase·java 分布式存储·时空大数据
计算机毕业设计木哥1 天前
计算机毕业设计 基于Python+Django的医疗数据分析系统
开发语言·hadoop·后端·python·spark·django·课程设计
howard20052 天前
VMWare上搭建Hive集群
hive·hadoop