【机器学习】鲁棒(健壮)回归-Huber损失(Huber Loss)

Huber损失是一种对异常值(outliers)具有鲁棒性的损失函数,它在处理回归问题时常用,结合了均方误差(MSE)的平滑性和平均绝对误差(MAE)的鲁棒性。

Huber损失通过引入一个阈值 来定义,当误差小于 时采用 MSE,当误差大于 时采用 MAE。


定义公式

Huber损失的数学表达式如下:

其中:

  • a = y - f(x) 是预测值 f(x) 和真实值 y 的残差。
  • 是用户定义的超参数,控制 MSE 和 MAE 的切换点。
特点
  1. 对于 :Huber损失是二次函数,类似 MSE,强调小残差的平滑优化。
  2. 对于 :Huber损失是线性函数,类似 MAE,减轻了离群点对损失值的影响。

Huber损失的梯度

  1. 小误差( **)**梯度为:

  2. 大误差() 梯度为:


优缺点

优点
  1. 对小误差采用 MSE,确保了模型的平滑性和稳定性。
  2. 对大误差采用 MAE,降低了离群点对整体模型的影响。
缺点
  1. 超参数 δ\deltaδ 的选择对模型性能影响较大,需要调优。
  2. 计算复杂度比单纯的 MSE 和 MAE 略高。

Python实现:Huber损失

以下是 Huber 损失的简单实现:

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# Huber损失函数
def huber_loss(y_true, y_pred, delta):
    error = y_true - y_pred
    loss = np.where(np.abs(error) <= delta,
                    0.5 * error**2,
                    delta * (np.abs(error) - 0.5 * delta))
    return loss

# 示例数据
y_true = np.array([1, 2, 3, 4, 5])
y_pred = np.array([1.1, 1.9, 3.5, 2.5, 10])
delta = 1.0

# 计算Huber损失
loss = huber_loss(y_true, y_pred, delta)
print("Huber损失:", loss)
print("总损失:", np.sum(loss))

# 可视化损失函数
errors = np.linspace(-5, 5, 100)
losses = huber_loss(0, errors, delta)

plt.plot(errors, losses, label="Huber Loss")
plt.axvline(x=delta, color="red", linestyle="--", label=f"Delta = {delta}")
plt.axvline(x=-delta, color="red", linestyle="--")
plt.title("Huber Loss Function")
plt.xlabel("Error")
plt.ylabel("Loss")
plt.legend()
plt.show()

输出结果

  • 打印每个数据点的 Huber 损失值和总损失。

    Matlab 复制代码
    Huber损失: [0.005 0.005 0.125 1.    4.5  ]
    总损失: 5.635
  • 图形显示 Huber 损失函数的形状,包括在 δ\deltaδ 附近的平滑过渡。


Huber损失的应用

  1. 回归模型优化: Huber损失常用于带有异常值的回归问题,尤其在训练时数据中包含离群点。

  2. 鲁棒优化

    • 在神经网络中作为损失函数,用于对异常样本具有鲁棒性的训练。
    • 替代 MSE 或 MAE,平衡两者的优缺点。
  3. 机器学习框架: 诸如 TensorFlow 和 PyTorch 等深度学习框架中,都提供了 Huber 损失的实现。


Huber损失的变体

  1. Pseudo-Huber损失: 一种平滑的近似版本,用于优化过程中避免梯度不连续的问题。公式为:

  2. 自适应Huber损失 : 动态调整 值,根据数据特性自适应地减少离群点的影响。

相关推荐
ifeng091810 小时前
HarmonyOS实战项目:AI健康助手(影像识别与健康分析)
人工智能·华为·wpf·harmonyos
Aevget10 小时前
界面控件Telerik UI for WPF 2025 Q3亮点 - 集成AI编码助手
人工智能·ui·wpf·界面控件·ui开发·telerik
ccLianLian10 小时前
计算机视觉·TagCLIP
人工智能·算法
aneasystone本尊10 小时前
重温 Java 21 之虚拟线程
人工智能
geneculture10 小时前
官学商大跨界 · 产学研大综合:融智学新范式应用体系
大数据·人工智能·物联网·数据挖掘·哲学与科学统一性·信息融智学
这张生成的图像能检测吗10 小时前
(综述)基于深度学习的制造业表面缺陷检测图像合成方法综述
人工智能·计算机视觉·图像生成·工业检测·计算机图像学
草莓熊Lotso10 小时前
C++ 继承特殊场景解析:友元、静态成员与菱形继承的底层逻辑
服务器·开发语言·c++·人工智能·经验分享·笔记·1024程序员节
安如衫10 小时前
【学习笔记更新中】Deeplearning.AI 大语言模型后训练:微调与强化学习导论
人工智能·llm·sft·后训练·deepseek
IT_陈寒10 小时前
5个Python 3.12新特性让你的代码效率提升50%,第3个太实用了!
前端·人工智能·后端
love is sour10 小时前
理解全连接层:深度学习中的基础构建块
人工智能·深度学习