Pandas库的常用内容归纳

Pandas 是一个强大的 Python 数据分析库,提供了大量用于数据处理和分析的功能。以下是一些 Pandas 库中常用的功能:

数据创建和操作

  • Series 和 DataFrame:创建一维的 Series 和二维的 DataFrame 对象。
  • 数据导入:从 CSV、Excel、SQL 数据库等导入数据。
  • 数据导出:将 DataFrame 导出为 CSV、Excel、SQL 数据库等格式。
  • 数据合并 :使用 concatmergejoin 方法合并数据集。

数据选择

  • 列选择:使用列名或列索引选择列。
  • 行选择:使用行索引选择行。
  • 条件选择:使用布尔索引根据条件选择数据。
  • lociloc:基于标签和位置的索引选择。

数据清洗

  • 处理缺失值 :使用 dropnafillna 等方法处理缺失数据。
  • 重复值处理 :使用 duplicateddrop_duplicates 检测和删除重复数据。
  • 数据类型转换 :使用 astype 方法转换数据类型。
  • 数据重塑 :使用 pivotmeltstackunstack 方法重塑数据。

数据分组和聚合

  • 分组 :使用 groupby 方法按一个或多个键分组数据。
  • 聚合 :使用 aggsummeanmaxmin 等方法对分组后的数据进行聚合。

数据转换

  • 排序 :使用 sort_valuessort_index 方法对数据进行排序。
  • 索引设置 :使用 set_indexreset_index 方法设置和重置索引。
  • 数据透视表 :使用 pivot_table 方法创建数据透视表。

数据分析

  • 描述性统计 :使用 describe 方法获取数据的快速统计摘要。
  • 相关性分析 :使用 corr 方法计算列之间的相关性。
  • 时间序列分析:使用时间序列相关的方法进行日期范围选择、频率转换等。

数据可视化

  • 绘图 :使用 plot 方法绘制线图、柱状图、饼图等。
    这些功能只是 Pandas 库中的一部分,但它们是进行数据分析时最常使用的功能。Pandas 的强大之处在于其能够以直观和高效的方式处理大量数据,从而使得数据分析工作变得更加容易。
相关推荐
Calihen的学习日志1 天前
【Pandas】3.1-数据预处理:列的基本操作
python·pandas
Source.Liu2 天前
【Python自动化】 21.2 Pandas 读取 Excel 时的 dtype 参数完全指南
python·自动化·pandas
Source.Liu2 天前
【Python自动化】 21 Pandas Excel 操作完整指南
python·excel·pandas
Source.Liu2 天前
【Python自动化】 21.1 Pandas 读取 Excel 文件的完整指南
python·自动化·pandas
偷心伊普西隆4 天前
Pandas DataFrame 指南
python·数据分析·pandas
chad__chang9 天前
Pandas的数据结构
数据结构·pandas
老歌老听老掉牙12 天前
Pandas DataFrame 列数操作完全指南
python·pandas
万粉变现经纪人12 天前
如何解决pip安装报错ModuleNotFoundError: No module named ‘websockets’问题
ide·pycharm·beautifulsoup·pandas·fastapi·pip·httpx
偷心伊普西隆16 天前
Python Excel 通用筛选函数
python·excel·pandas
高级测试工程师欧阳17 天前
python中selenium怎么使用
python·pandas