Pandas库的常用内容归纳

Pandas 是一个强大的 Python 数据分析库,提供了大量用于数据处理和分析的功能。以下是一些 Pandas 库中常用的功能:

数据创建和操作

  • Series 和 DataFrame:创建一维的 Series 和二维的 DataFrame 对象。
  • 数据导入:从 CSV、Excel、SQL 数据库等导入数据。
  • 数据导出:将 DataFrame 导出为 CSV、Excel、SQL 数据库等格式。
  • 数据合并 :使用 concatmergejoin 方法合并数据集。

数据选择

  • 列选择:使用列名或列索引选择列。
  • 行选择:使用行索引选择行。
  • 条件选择:使用布尔索引根据条件选择数据。
  • lociloc:基于标签和位置的索引选择。

数据清洗

  • 处理缺失值 :使用 dropnafillna 等方法处理缺失数据。
  • 重复值处理 :使用 duplicateddrop_duplicates 检测和删除重复数据。
  • 数据类型转换 :使用 astype 方法转换数据类型。
  • 数据重塑 :使用 pivotmeltstackunstack 方法重塑数据。

数据分组和聚合

  • 分组 :使用 groupby 方法按一个或多个键分组数据。
  • 聚合 :使用 aggsummeanmaxmin 等方法对分组后的数据进行聚合。

数据转换

  • 排序 :使用 sort_valuessort_index 方法对数据进行排序。
  • 索引设置 :使用 set_indexreset_index 方法设置和重置索引。
  • 数据透视表 :使用 pivot_table 方法创建数据透视表。

数据分析

  • 描述性统计 :使用 describe 方法获取数据的快速统计摘要。
  • 相关性分析 :使用 corr 方法计算列之间的相关性。
  • 时间序列分析:使用时间序列相关的方法进行日期范围选择、频率转换等。

数据可视化

  • 绘图 :使用 plot 方法绘制线图、柱状图、饼图等。
    这些功能只是 Pandas 库中的一部分,但它们是进行数据分析时最常使用的功能。Pandas 的强大之处在于其能够以直观和高效的方式处理大量数据,从而使得数据分析工作变得更加容易。
相关推荐
小白学大数据3 天前
Python爬虫实现无限滚动页面的自动点击与内容抓取
开发语言·爬虫·python·pandas
LilySesy5 天前
【SAP-MOM项目】二、接口对接(中)
开发语言·python·pandas·restful·sap·abap
qq_3814549910 天前
Python Pandas完全指南:从核心数据结构到实战操作
pandas
TUTO_TUTO11 天前
【python-词汇指标提取工具开发】自学笔记(1)-后端程序
人工智能·python·pandas·visual studio code
葱明撅腚11 天前
shapely空间数据分析
python·pandas·gis·shapely
忘忧记12 天前
pandas基础三
pandas
叫我:松哥14 天前
基于scrapy的网易云音乐数据采集与分析设计实现
python·信息可视化·数据分析·beautifulsoup·numpy·pandas
测试摆渡媛14 天前
Excel模板填充工具(工具&脚本分享)
python·数据挖掘·pandas
_Soy_Milk14 天前
【算法工程师】—— Python 数据分析
python·数据分析·numpy·pandas·matplotlib
Data-Miner15 天前
类似Pandas AI的几个数据分析处理智能体介绍
人工智能·数据分析·pandas