llama.cpp编译和运行 API调用

llama.cpp编译和运行 API调用

llama.cpp介绍

llama.cpp是一个开源项目,官方地址:https://github.com/ggerganov/llama.cpp,使用纯 C/C++推理 Meta 的LLaMA模型,专门为在本地CPU上部署量化模型而设计。

它提供了一种简单而高效的方法,将训练好的量化模型转换为可在CPU上运行的低配推理版本,可加快推理速度并减少内存使用。

llama.cpp优势
  • 高性能:llama.cpp针对CPU进行了优化,能够在保证精度的同时提供高效的推理性能。

  • 低资源:由于采用了量化技术,llama.cpp可以显著减少模型所需的存储空间和计算资源,可运行在端侧设备上。

  • 易集成:llama.cpp提供了简洁的API和接口,方便开发者将其集成到自己的项目中。

  • 跨平台支持:llama.cpp可在多种操作系统和CPU架构上运行,具有很好的可移植性。

llama.cpp编译
shell 复制代码
安装编译环境
sudo apt install cmake g++ git

下载源代码
git clone https://github.com/ggerganov/llama.cpp


cd llama.cpp/
cd build/
编译
cmake ..
make

gcc --version
g++ --version
cmake .. -DCMAKE_CXX_FLAGS="-mavx -mfma"
    
cmake --build build --config Release -march=native -mtune=native
cmake -march=native -mtune=native --build build --config Release
cmake -DLLAMA_NATIVE=OFF
cmake -B build -DGGML_LLAMAFILE=OFF

编译完成后,会生成很多可执行文件,如图

llama.cpp运行

llama.cpp提供了与OpenAI API兼容的API接口,使用make生成的llama-server来启动API服务

shell 复制代码
本地启动 HTTP 服务器,使用端口:8080 指定Llama-3.1-8B-Instruct推理模型
.\llama-server.exe -m E:\ai_model\Imstudio-ai\lmstudio-community\Meta-Llama-3.1-8B-Instruct-GGUF\Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf --port 8080

调用API服务

shell 复制代码
curl --request POST     --url http://localhost:8080/completion
     --header "Content-Type: application/json"
     --data '{"prompt": "介绍一下llama.cpp"}'
     ```
相关推荐
He_Donglin7 分钟前
Data Mining|缺省值补全实验
人工智能·机器学习·数据挖掘
macken99998 分钟前
音频分类的学习
人工智能·深度学习·学习·计算机视觉·音视频
钟屿17 分钟前
Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise论文阅读
论文阅读·图像处理·人工智能·深度学习·计算机视觉
虾球xz18 分钟前
游戏引擎学习第278天:将实体存储移入世界区块
数据库·c++·学习·游戏引擎
仙人掌_lz25 分钟前
用PyTorch在超大规模下训练深度学习模型:并行策略全解析
人工智能·pytorch·深度学习
商业讯25 分钟前
深圳无人机展览即将开始,无人机舵机为什么选择伟创动力
人工智能
视觉语言导航32 分钟前
AAAI-2025 | 中科院无人机导航新突破!FELA:基于细粒度对齐的无人机视觉对话导航
人工智能·深度学习·机器人·无人机·具身智能
孚为智能科技37 分钟前
无人机箱号识别系统结合5G技术的应用实践
图像处理·人工智能·5g·目标检测·计算机视觉·视觉检测·无人机
灏瀚星空41 分钟前
地磁-惯性-视觉融合制导系统设计:现代空战导航的抗干扰解决方案
图像处理·人工智能·python·深度学习·算法·机器学习·信息与通信
Livan.Tang44 分钟前
LIO-SAM框架理解
人工智能·机器学习·slam