Kinova仿生机械臂Gen3搭载BOTA 力矩传感器SeneOne:彰显机器人触觉 AI 与六维力传感的融合力量

随着工业4.0时代的到来,自动化和智能化成为制造业的趋势。机器人作为实现这一趋势的重要工具,其性能和智能水平直接影响到生产效率和产品质量。然而,传统的机器人系统在应对复杂任务时往往缺乏足够的灵活性和适应性。为了解决这一问题,Kinova Robotics与BOTA Systems携手合作,共同探索机器人技术与力扭矩传感器集成的创新之路。

Kinova Robotics与BOTA Systems的合作展示了机器人技术与力扭矩传感器集成的优势。Gen 3机械臂以其模块化设计和高精度控制能力而受到认可,而SensONE T15传感器则通过其六轴力矩测量功能,为机械臂提供了实时的力反馈数据。这种集成方式无需额外适配器,仅通过ISO 9409-1-50-4-M6安装法兰即可实现快速安装,大幅降低了开发者的集成难度。

SensONE T15传感器

SensONE传感器以其紧凑的设计和高性能在机器人技术与力扭矩传感器集成领域具有重要作用。具备强大的负载能力和过载保护功能,即使在高强度应用中也能确保安全性。内置的6自由度IMU增强了其多模态感知能力,使其能够在动态环境中提供精准的力和扭矩测量。

bota产品系列

为了简化开发流程,SensONE传感器提供了Python和C++接口,并附带详细的示例代码。这种对开发者友好的支持,使得机器人技术与力扭矩传感器集成的实现更加高效。开发者可以通过这些接口快速获取传感器数据,并将其应用于机器人控制算法中。此外,SensONE还支持与ROS、LabVIEW和MATLAB®等主流软件平台的集成,进一步扩展了其应用场景。

SensONE传感器多模态感知能力和与主流软件平台的兼容性,使其成为学术实验室中有价值的工具。通过与Kinova 的Gen 3机械臂集成,研究人员能够快速搭建实验环境,专注于算法优化和技术创新。

BOTA高精度力矩传感器在工业自动化领域展现了广泛的应用潜力。其高负载能力和过载保护功能使其能够胜任高强度的工业任务。例如,在精密装配中,传感器提供的实时力反馈确保了操作的一致性和产品质量。在打磨和抛光任务中,BOTA传感器帮助机器人实现了更高的表面处理精度。

相关推荐
jndingxin2 小时前
OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
人工智能·opencv·计算机视觉
Sweet锦2 小时前
零基础保姆级本地化部署文心大模型4.5开源系列
人工智能·语言模型·文心一言
hie988943 小时前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab
晨同学03273 小时前
opencv的颜色通道问题 & rgb & bgr
人工智能·opencv·计算机视觉
蓝婷儿4 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
大千AI助手4 小时前
PageRank:互联网的马尔可夫链平衡态
人工智能·机器学习·贝叶斯·mc·pagerank·条件概率·马尔科夫链
小和尚同志4 小时前
Cline | Cline + Grok3 免费 AI 编程新体验
人工智能·aigc
我就是全世界4 小时前
TensorRT-LLM:大模型推理加速的核心技术与实践优势
人工智能·机器学习·性能优化·大模型·tensorrt-llm
.30-06Springfield4 小时前
决策树(Decision tree)算法详解(ID3、C4.5、CART)
人工智能·python·算法·决策树·机器学习
我不是哆啦A梦4 小时前
破解风电运维“百模大战”困局,机械版ChatGPT诞生?
运维·人工智能·python·算法·chatgpt