YOLO系列代码

Test-Time Augmentation

  • TTA (Test Time Augmentation)是指在test过程中进行数据增强。
  • 其思想非常简单,就是在评测阶段,给每个输入进行多种数据增广变换将一个输入变成多个输入,然后再merge起来一起输出,形成一种ensemble的效果,可以用来提点。
  • 参考:https://zhuanlan.zhihu.com/p/131539596

YOLOX是旷视科技在2021年发表的一篇文章,当时主要对标的网络就是很火的YOLO v5,对比简单总结主要有三点,decoupled head、anchor-free以及advanced label assigning strategy(SimOTA)。

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| yolov5 | yolox |
| # Basic size of multi-scale prior box anchors = [ [(10, 13), (16, 30), (33, 23)], # P3/8 [(30, 61), (62, 45), (59, 119)], # P4/16 [(116, 90), (156, 198), (373, 326)] # P5/32 ] | 无 |
| # Config of batch shapes. Only on val. # It means not used if batch_shapes_cfg is None. batch_shapes_cfg = dict( type='BatchShapePolicy', batch_size=val_batch_size_per_gpu, img_size=img_scale[0], # The image scale of padding should be divided by pad_size_divisor size_divisor=32, # Additional paddings for pixel scale extra_pad_ratio=0.5) | |
| | init_cfg data_preprocessor |
| 都有相比yolov3提出的是SPPF,更快,级连池化 | backbone: spp_kernal_sizes=(5, 9, 13), |
| YOLOv5HeadModule YOLOAnchorGenerator | YOLOXHeadModule SimOTAAssigner |
| * Classes loss:使用的是 BCE loss * Objectness loss:使用的是 BCE loss * Location loss:使用的是 CIoU loss | L1 loss |

decoupled detection head中对于预测Cls.Reg.以及IoU参数分别使用三个不同的分支,这样就将三者进行了解耦。这里需要注意一点,在YOLOX中对于不同的预测特征图采用不同的head,即参数不共享。以下为yolox:

以下为yolov5

YOLOv5 Head 结构和 YOLOv3 完全一样,为 非解耦 Head。Head 模块只包括 3 个不共享权重的卷积,用于将输入特征图进行变换而已。

前面的 PAFPN 依然是输出 3 个不同尺度的特征图,shape 为 (B,256,80,80)、 (B,512,40,40) 和 (B,1024,20,20)。 由于 YOLOv5 是非解耦输出,即分类和 bbox 检测等都是在同一个卷积的不同通道中完成。以 COCO 80 类为例:

  • P5 模型在输入为 640x640 分辨率情况下,其 Head 模块输出的 shape 分别为 (B, 3x(4+1+80),80,80), (B, 3x(4+1+80),40,40)(B, 3x(4+1+80),20,20)

  • P6 模型在输入为 1280x1280 分辨率情况下,其 Head 模块输出的 shape 分别为 (B, 3x(4+1+80),160,160), (B, 3x(4+1+80),80,80), (B, 3x(4+1+80),40,40)(B, 3x(4+1+80),20,20)。 其中 3 表示 3 个 anchor,4 表示 bbox 预测分支,1 表示 obj 预测分支,80 表示 COCO 数据集类别预测分支。

相关推荐
啊阿狸不会拉杆几秒前
《机器学习导论》第 2 章-监督学习
数据结构·人工智能·python·学习·算法·机器学习·监督学习
GAOJ_K1 分钟前
弧形导轨与直线导轨:曲线运动与直线运动
运维·人工智能·科技·机器人·自动化·制造
qq_12498707532 分钟前
基于Javaweb的《战舰世界》游戏百科信息系统(源码+论文+部署+安装)
java·vue.js·人工智能·spring boot·游戏·毕业设计·计算机毕业设计
Gavin在路上2 分钟前
SpringAIAlibaba之短期记忆与长期记忆实现原理(十一)
开发语言·人工智能
colus_SEU3 分钟前
【论文精读】Instance-Dependent Partial Label Learning
人工智能·深度学习·机器学习·pll·部分标签学习
小飞象—木兮5 分钟前
《电商运营分析手册》:定义、价值、产品规划与定价策略、指标体系与公式详解、电商运营框架、运营思维与经营复盘···(附相关材料下载)
大数据·人工智能·产品运营
Lethehong5 分钟前
一次 GLM-4.7 的 MaaS 接入实践:Dify 工作流搭建笔记
人工智能·蓝耘元生代·蓝耘maas
Cx330❀5 分钟前
深入理解 Linux 基础 IO:从 C 库到系统调用的完整剖析
linux·运维·服务器·c语言·数据库·人工智能·科技
jkyy20146 分钟前
赋能TOB端|以智能科技,筑牢糖尿病慢病精细化管理防线
大数据·人工智能·健康医疗
qwy71522925816311 分钟前
17-像素点和ROI操作
人工智能·opencv·计算机视觉