YOLO系列代码

Test-Time Augmentation

  • TTA (Test Time Augmentation)是指在test过程中进行数据增强。
  • 其思想非常简单,就是在评测阶段,给每个输入进行多种数据增广变换将一个输入变成多个输入,然后再merge起来一起输出,形成一种ensemble的效果,可以用来提点。
  • 参考:https://zhuanlan.zhihu.com/p/131539596

YOLOX是旷视科技在2021年发表的一篇文章,当时主要对标的网络就是很火的YOLO v5,对比简单总结主要有三点,decoupled head、anchor-free以及advanced label assigning strategy(SimOTA)。

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| yolov5 | yolox |
| # Basic size of multi-scale prior box anchors = [ [(10, 13), (16, 30), (33, 23)], # P3/8 [(30, 61), (62, 45), (59, 119)], # P4/16 [(116, 90), (156, 198), (373, 326)] # P5/32 ] | 无 |
| # Config of batch shapes. Only on val. # It means not used if batch_shapes_cfg is None. batch_shapes_cfg = dict( type='BatchShapePolicy', batch_size=val_batch_size_per_gpu, img_size=img_scale[0], # The image scale of padding should be divided by pad_size_divisor size_divisor=32, # Additional paddings for pixel scale extra_pad_ratio=0.5) | |
| | init_cfg data_preprocessor |
| 都有相比yolov3提出的是SPPF,更快,级连池化 | backbone: spp_kernal_sizes=(5, 9, 13), |
| YOLOv5HeadModule YOLOAnchorGenerator | YOLOXHeadModule SimOTAAssigner |
| * Classes loss:使用的是 BCE loss * Objectness loss:使用的是 BCE loss * Location loss:使用的是 CIoU loss | L1 loss |

decoupled detection head中对于预测Cls.Reg.以及IoU参数分别使用三个不同的分支,这样就将三者进行了解耦。这里需要注意一点,在YOLOX中对于不同的预测特征图采用不同的head,即参数不共享。以下为yolox:

以下为yolov5

YOLOv5 Head 结构和 YOLOv3 完全一样,为 非解耦 Head。Head 模块只包括 3 个不共享权重的卷积,用于将输入特征图进行变换而已。

前面的 PAFPN 依然是输出 3 个不同尺度的特征图,shape 为 (B,256,80,80)、 (B,512,40,40) 和 (B,1024,20,20)。 由于 YOLOv5 是非解耦输出,即分类和 bbox 检测等都是在同一个卷积的不同通道中完成。以 COCO 80 类为例:

  • P5 模型在输入为 640x640 分辨率情况下,其 Head 模块输出的 shape 分别为 (B, 3x(4+1+80),80,80), (B, 3x(4+1+80),40,40)(B, 3x(4+1+80),20,20)

  • P6 模型在输入为 1280x1280 分辨率情况下,其 Head 模块输出的 shape 分别为 (B, 3x(4+1+80),160,160), (B, 3x(4+1+80),80,80), (B, 3x(4+1+80),40,40)(B, 3x(4+1+80),20,20)。 其中 3 表示 3 个 anchor,4 表示 bbox 预测分支,1 表示 obj 预测分支,80 表示 COCO 数据集类别预测分支。

相关推荐
sld1681 小时前
农资行业B2B多租户商城系统推荐,适配农业经销商层级管理
大数据·人工智能
yunhuibin1 小时前
LeNet
人工智能·python
Mixtral3 小时前
2026年春招复盘记录工具测评:告别手动整理,AI自动生成求职总结
人工智能·面试·职场和发展·语音转文字·ai语音转文字
哥布林学者7 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(五)GloVe 算法
深度学习·ai
kuiini8 小时前
模型转换、加速与推理优化【Plan 8】
深度学习
Quintus五等升8 小时前
深度学习④|分类任务—VGG13
人工智能·经验分享·深度学习·神经网络·学习·机器学习·分类
2501_936146048 小时前
小型机械零件识别与分类--基于YOLO12-A2C2f-DFFN-DYT模型的创新实现
人工智能·分类·数据挖掘
天天讯通9 小时前
金融邀约实时质检:呼叫监控赋能客服主管
人工智能·金融
飞Link9 小时前
深度解析 MSER 最大稳定极值区域算法
人工智能·opencv·算法·计算机视觉
夜勤月9 小时前
给AI装上“文件之手”:深入解析MCP文件系统服务的安全沙箱与读写实践
人工智能·安全