【数据分析】coco格式数据生成yolo数据可视化

yolo的数据可视化很详细,coco格式没有。所以写了一个接口。

输入:coco格式的instances.json

输出:生成像yolo那样的标注文件统计并可视化

python 复制代码
import os
import random
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sn
from glob import glob
from PIL import Image, ImageDraw
import json
"""

功能:
    读取instances.json
    生成像yolo那样的标注文件统计并可视化
    
"""

def convert(size, box): 
    # size(img_width, img_height)
    # box=[x_min, y_min, width, height]
    # coco转yolo   
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = box[0] + box[2] / 2.0
    y = box[1] + box[3] / 2.0
    w = box[2]
    h = box[3]
    #round函数确定(xmin, ymin, xmax, ymax)的小数位数
    x = round(x * dw, 6)
    w = round(w * dw, 6)
    y = round(y * dh, 6)
    h = round(h * dh, 6)
    return (x, y, w, h)

def plot_labels(labels, names=(), save_dir='',colors=[0,0,255]):
    # plot dataset labels
    print('Plotting labels... ')
    c, b = labels[:, 0], labels[:, 1:].transpose()  # classes, boxes
    nc = int(c.max() + 1)  # number of classes
    x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])

    # seaborn correlogram
    sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
    plt.savefig(os.path.join(save_dir, 'labels_correlogram.jpg'), dpi=200)
    plt.close()

    # matplotlib labels
    matplotlib.use('svg')  # faster
    ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
    y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
    # [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)]  # update colors bug #3195
    ax[0].set_ylabel('instances')
    if 0 < len(names) < 30:
        ax[0].set_xticks(range(len(names)))
        ax[0].set_xticklabels(names, rotation=90, fontsize=10)
    else:
        ax[0].set_xlabel('classes')
    sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
    sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)

    # rectangles
    labels[:, 1:3] = 0.5  # center
    labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
    img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
    for cls, *box in labels[:1000]:
        ImageDraw.Draw(img).rectangle(box, width=1, outline=colors[int(cls)-1])  # plot
    ax[1].imshow(img)
    ax[1].axis('off')

    for a in [0, 1, 2, 3]:
        for s in ['top', 'right', 'left', 'bottom']:
            ax[a].spines[s].set_visible(False)

    plt.savefig(os.path.join(save_dir, 'labels.jpg'), dpi=200)
    matplotlib.use('Agg')
    plt.close()

def xywh2xyxy(x):
    # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
    y = np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
    y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
    y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
    y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y
    return y



def main(json_name,save_root,data_name):

 
    # 获取当前数据集中所有json文件
    
    with open(json_name, 'r', encoding='utf-8') as file:
        result = json.load(file)

    # 每个类别一个颜色
    category=[]
    for i in result['categories']:
        category.append(i['name'])# 类别
    num_classes = len(category)  # 类别数
    colors = [(random.randint(0,255),random.randint(0,255),random.randint(0,255)) for _ in range(num_classes)]  # 每个类别生成一个随机颜色

    # 统计标注信息
    shapes = []  # 标注框
    ids = []  # 类别名的索引
    for i in result['annotations']:
        img_height=result['images'][i['image_id']-1]['height']
        img_width=result['images'][i['image_id']-1]['width']
        label_id=i['category_id']
        ids.append([label_id])
        (x, y, w, h)=convert([img_width, img_height], i['bbox']) 
        shapes.append([x, y, w, h])
    shapes = np.array(shapes)
    ids = np.array(ids)
    lbs = np.hstack((ids, shapes))
    plot_labels(labels=lbs, names=np.array(category),save_dir=os.path.join(save_root,data_name),colors=colors)

    print("可视化已保存:", os.path.join(save_root,data_name, "label.jpg"))


if __name__ == "__main__":
	json_name = os.path.join(path,data_name,'annotations','instances.json')
	save_root='保存路径'
	data_name='数据集的名称'
    main(json_name,save_root,data_name)

labels.jpg

labels_correlogram.jpg

相关推荐
安替-AnTi2 小时前
基于 React 和 TypeScript 搭建的机器学米其林餐厅数据分析项目
react.js·typescript·数据分析·毕设·米其林
秀儿还能再秀15 小时前
基于Excel的数据分析思维与分析方法
数据分析·excel
要努力啊啊啊19 小时前
YOLOv3-SPP Auto-Anchor 聚类调试指南!
人工智能·深度学习·yolo·目标检测·目标跟踪·数据挖掘
好开心啊没烦恼19 小时前
Python 数据分析:numpy,说人话,说说数组维度。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy
涤生大数据1 天前
Apache Spark 4.0:将大数据分析提升到新的水平
数据分析·spark·apache·数据开发
可观测性用观测云1 天前
Pipeline 引用外部数据源最佳实践
数据分析
加油吧zkf1 天前
AI大模型如何重塑软件开发流程?——结合目标检测的深度实践与代码示例
开发语言·图像处理·人工智能·python·yolo
大数据CLUB1 天前
基于spark的奥运会奖牌变化数据分析
大数据·hadoop·数据分析·spark
好开心啊没烦恼1 天前
Python 数据分析:计算,分组统计1,df.groupby()。听故事学知识点怎么这么容易?
开发语言·python·数据挖掘·数据分析·pandas
数据饕餮2 天前
Python数据分析基础03:探索性数据分析
python·信息可视化·数据分析