【数据分析】coco格式数据生成yolo数据可视化

yolo的数据可视化很详细,coco格式没有。所以写了一个接口。

输入:coco格式的instances.json

输出:生成像yolo那样的标注文件统计并可视化

python 复制代码
import os
import random
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sn
from glob import glob
from PIL import Image, ImageDraw
import json
"""

功能:
    读取instances.json
    生成像yolo那样的标注文件统计并可视化
    
"""

def convert(size, box): 
    # size(img_width, img_height)
    # box=[x_min, y_min, width, height]
    # coco转yolo   
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = box[0] + box[2] / 2.0
    y = box[1] + box[3] / 2.0
    w = box[2]
    h = box[3]
    #round函数确定(xmin, ymin, xmax, ymax)的小数位数
    x = round(x * dw, 6)
    w = round(w * dw, 6)
    y = round(y * dh, 6)
    h = round(h * dh, 6)
    return (x, y, w, h)

def plot_labels(labels, names=(), save_dir='',colors=[0,0,255]):
    # plot dataset labels
    print('Plotting labels... ')
    c, b = labels[:, 0], labels[:, 1:].transpose()  # classes, boxes
    nc = int(c.max() + 1)  # number of classes
    x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])

    # seaborn correlogram
    sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
    plt.savefig(os.path.join(save_dir, 'labels_correlogram.jpg'), dpi=200)
    plt.close()

    # matplotlib labels
    matplotlib.use('svg')  # faster
    ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
    y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
    # [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)]  # update colors bug #3195
    ax[0].set_ylabel('instances')
    if 0 < len(names) < 30:
        ax[0].set_xticks(range(len(names)))
        ax[0].set_xticklabels(names, rotation=90, fontsize=10)
    else:
        ax[0].set_xlabel('classes')
    sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
    sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)

    # rectangles
    labels[:, 1:3] = 0.5  # center
    labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
    img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
    for cls, *box in labels[:1000]:
        ImageDraw.Draw(img).rectangle(box, width=1, outline=colors[int(cls)-1])  # plot
    ax[1].imshow(img)
    ax[1].axis('off')

    for a in [0, 1, 2, 3]:
        for s in ['top', 'right', 'left', 'bottom']:
            ax[a].spines[s].set_visible(False)

    plt.savefig(os.path.join(save_dir, 'labels.jpg'), dpi=200)
    matplotlib.use('Agg')
    plt.close()

def xywh2xyxy(x):
    # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
    y = np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
    y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
    y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
    y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y
    return y



def main(json_name,save_root,data_name):

 
    # 获取当前数据集中所有json文件
    
    with open(json_name, 'r', encoding='utf-8') as file:
        result = json.load(file)

    # 每个类别一个颜色
    category=[]
    for i in result['categories']:
        category.append(i['name'])# 类别
    num_classes = len(category)  # 类别数
    colors = [(random.randint(0,255),random.randint(0,255),random.randint(0,255)) for _ in range(num_classes)]  # 每个类别生成一个随机颜色

    # 统计标注信息
    shapes = []  # 标注框
    ids = []  # 类别名的索引
    for i in result['annotations']:
        img_height=result['images'][i['image_id']-1]['height']
        img_width=result['images'][i['image_id']-1]['width']
        label_id=i['category_id']
        ids.append([label_id])
        (x, y, w, h)=convert([img_width, img_height], i['bbox']) 
        shapes.append([x, y, w, h])
    shapes = np.array(shapes)
    ids = np.array(ids)
    lbs = np.hstack((ids, shapes))
    plot_labels(labels=lbs, names=np.array(category),save_dir=os.path.join(save_root,data_name),colors=colors)

    print("可视化已保存:", os.path.join(save_root,data_name, "label.jpg"))


if __name__ == "__main__":
	json_name = os.path.join(path,data_name,'annotations','instances.json')
	save_root='保存路径'
	data_name='数据集的名称'
    main(json_name,save_root,data_name)

labels.jpg

labels_correlogram.jpg

相关推荐
喵叔哟8 分钟前
02-YOLO-v8-v9-v10工程差异对比
人工智能·yolo·机器学习
那个村的李富贵32 分钟前
解锁CANN仓库核心能力:50行代码搭建国产化AIGC图片风格迁移神器
mysql·信息可视化·aigc·cann
爱吃泡芙的小白白3 小时前
环境数据多维关系探索利器:Pairs Plot 完全指南
python·信息可视化·数据分析·环境领域·pairs plot
莽撞的大地瓜4 小时前
洞察,始于一目了然——让舆情数据自己“说话”
大数据·网络·数据分析
AI职业加油站4 小时前
职业提升之路:我的大数据分析师学习与备考分享
大数据·人工智能·经验分享·学习·职场和发展·数据分析
2501_9413331016 小时前
数字识别与检测_YOLOv3_C3k2改进模型解析
人工智能·yolo·目标跟踪
砚边数影16 小时前
数据可视化入门:Matplotlib 基础语法与折线图绘制
数据库·信息可视化·matplotlib·数据可视化·kingbase·数据库平替用金仓·金仓数据库
xsc-xyc19 小时前
RuntimeError: Dataset ‘/data.yaml‘ error ❌ ‘_lz
人工智能·深度学习·yolo·计算机视觉·视觉检测
张3蜂20 小时前
我希望做的是识别身份证正反面,我需要标注多少张图片?
yolo
计算机学姐1 天前
基于SpringBoot的民宿预定管理系统【三角色+个性化推荐算法+数据可视化统计】
java·vue.js·spring boot·mysql·信息可视化·intellij-idea·推荐算法