论文略读:ASurvey of Large Language Models for Graphs

2024 KDD

  • 归纳了四种主要的graph+大模型
    • GNNs as Prefix
    • LLMs as Prefix
    • LLMs-Graphs Integration
    • LLMs-Only

1 GNNs as Prefix

1.1 节点级 Token 化

  • 将图结构中的每个节点单独输入到 LLM 中
  • 使 LLM 能够深入理解细粒度的节点级结构信息,并准确辨别不同节点间的关联与差异
  • 最大限度地保留每个节点的特有结构特征

1.2 图级 Token 化

  • 将graph综合成一个统一的图表示,喂给大模型

2 LLMs as Prefix

2.1 LLM作为嵌入器

  • 借助大模型在语言总结和建模方面的卓越能力,为 GNNs 生成富有意义和效果的嵌入,从而提升其训练效果

2.2 LLM作为label

  • LLM生成的信息不直接作为 GNNs 的输入数据,而是构成了更为精细的优化监督信号

3 LLMs-Graphs Intergration

3.1 GNNs 与 LLMs 的融合

  • 通常 GNNs 专注于处理结构化数据,而 LLMs 则擅长处理文本数据,这导致两者具有不同的特征空间
  • 为了解决这一问题,并促进两种数据模态对 GNNs 和 LLMs 学习的共同增益,一些方法采用对比学习或期望最大化(EM)迭代训练等技术,以对齐两个模型的特征空间

3.2 GNNs 与 LLMs 之间的对齐

  • 尽管表示对齐实现了两个模型的共同优化和嵌入级别的对齐,但在推理阶段它们仍是独立的
  • 为了实现 LLMs 和 GNNs 之间更紧密的集成,一些研究聚焦于设计更深层次的模块架构融合,例如将 LLMs 中的变换器层与 GNNs 中的图神经层相结合
  • 通过共同训练 GNNs 和 LLMs,可以在图任务中为两个模块带来双向的增益

3.3 基于LLM的图agent

  • 构建基于 LLMs 的自主智能体,以处理人类给出的或与研究相关的任

4 LLMs-only

4.1 无需微调的方法

设计 LLMs 能够理解的prompt

4.2 需要微调的方法

将图转换为特定方式的序列,并通过微调方法对齐图 token 序列和自然语言 token 序列

5 未来研究方向

5.1 多模态图与大型语言模型(LLMs)的融合

5.2 提升效率与降低计算成本

5.3 应对多样化的图任务

5.4 构建用户友好的图智能体

相关推荐
Johny_Zhao1 分钟前
Vmware workstation安装部署微软SCCM服务系统
网络·人工智能·python·sql·网络安全·信息安全·微软·云计算·shell·系统运维·sccm
动感光博16 分钟前
Unity(URP渲染管线)的后处理、动画制作、虚拟相机(Virtual Camera)
开发语言·人工智能·计算机视觉·unity·c#·游戏引擎
IT古董33 分钟前
【漫话机器学习系列】259.神经网络参数的初始化(Initialization Of Neural Network Parameters)
人工智能·神经网络·机器学习
tyatyatya40 分钟前
神经网络在MATLAB中是如何实现的?
人工智能·神经网络·matlab
Jackson@ML1 小时前
一分钟了解大语言模型(LLMs)
人工智能·语言模型·自然语言处理
让学习成为一种生活方式1 小时前
大麦(Hordeum vulgare)中 BAHD 超家族酰基转移酶-文献精读129
人工智能
思茂信息1 小时前
CST软件对OPERA&CST软件联合仿真汽车无线充电站对人体的影响
c语言·开发语言·人工智能·matlab·汽车·软件构建
墨绿色的摆渡人1 小时前
pytorch小记(二十):深入解析 PyTorch 的 `torch.randn_like`:原理、参数与实战示例
人工智能·pytorch·python
lqjun08271 小时前
Pytorch实现常用代码笔记
人工智能·pytorch·笔记
qyhua1 小时前
用 PyTorch 从零实现简易GPT(Transformer 模型)
人工智能·pytorch·transformer