力扣 打家劫舍

动态规划,当前状态由前两个状态获得,滚动数组。

题目

从题可以看出要达到最高金额时,要从相邻的房屋拿。因此是当前房屋的金额隔一个做累加,当然还需要跟前一个相邻的房屋做比较,便于取到哪边金额更高,因此需要一个dp数组做状态维护。

处理好边界问题,然后列出状态转移方程 dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1])。

时间复杂度: O(n),空间复杂度: O(n)。

java 复制代码
class Solution {
    public int rob(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }
        int length = nums.length;
        if (length == 1) {
            return nums[0];
        }
        int[] dp = new int[length];
        dp[0] = nums[0];
        dp[1] = Math.max(nums[0], nums[1]);
        for (int i = 2; i < length; i++) {
            dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[length - 1];
    }
}

注意,以上做了几次初始化的边界处理,因为直接用 dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]),为了防止数组越界,只能先对前面的数做特殊处理。然后,可以发现这个dp的更新都是与前两个dp有关,优化一下,可以使用滚动数组,在每个时刻只需要存储前两间房屋的最高总金额。这样维护状态的就不是一整个dp数组了,而是前面两个类似前缀和的引用。

时间复杂度: O(n),空间复杂度: O(1)。

java 复制代码
class Solution {
    public int rob(int[] nums) {
        int pre = 0, cur = 0, tmp;
        for(int num : nums) {
            tmp = cur;
            cur = Math.max(pre + num, cur);
            pre = tmp;
        }
        return cur;
    }
}

动态处理的步骤,最重要的就是找到状态转移方程,当前状态可能不做更新,也可能与上一个状态有关。然后注意边界处理,用数组进行状态维护,若只与前几个数有关,也可以做空间优化。

相关推荐
Polaris北极星少女39 分钟前
TRSV优化2
算法
较真的菜鸟40 分钟前
使用ASM和agent监控属性变化
java
黎雁·泠崖1 小时前
【魔法森林冒险】5/14 Allen类(三):任务进度与状态管理
java·开发语言
代码游侠1 小时前
C语言核心概念复习——网络协议与TCP/IP
linux·运维·服务器·网络·算法
2301_763472462 小时前
C++20概念(Concepts)入门指南
开发语言·c++·算法
qq_12498707532 小时前
基于SSM的动物保护系统的设计与实现(源码+论文+部署+安装)
java·数据库·spring boot·毕业设计·ssm·计算机毕业设计
Coder_Boy_2 小时前
基于SpringAI的在线考试系统-考试系统开发流程案例
java·数据库·人工智能·spring boot·后端
Mr_sun.2 小时前
Day06——权限认证-项目集成
java
瑶山2 小时前
Spring Cloud微服务搭建四、集成RocketMQ消息队列
java·spring cloud·微服务·rocketmq·dashboard
abluckyboy2 小时前
Java 实现求 n 的 n^n 次方的最后一位数字
java·python·算法