力扣 打家劫舍

动态规划,当前状态由前两个状态获得,滚动数组。

题目

从题可以看出要达到最高金额时,要从相邻的房屋拿。因此是当前房屋的金额隔一个做累加,当然还需要跟前一个相邻的房屋做比较,便于取到哪边金额更高,因此需要一个dp数组做状态维护。

处理好边界问题,然后列出状态转移方程 dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1])。

时间复杂度: O(n),空间复杂度: O(n)。

java 复制代码
class Solution {
    public int rob(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }
        int length = nums.length;
        if (length == 1) {
            return nums[0];
        }
        int[] dp = new int[length];
        dp[0] = nums[0];
        dp[1] = Math.max(nums[0], nums[1]);
        for (int i = 2; i < length; i++) {
            dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[length - 1];
    }
}

注意,以上做了几次初始化的边界处理,因为直接用 dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]),为了防止数组越界,只能先对前面的数做特殊处理。然后,可以发现这个dp的更新都是与前两个dp有关,优化一下,可以使用滚动数组,在每个时刻只需要存储前两间房屋的最高总金额。这样维护状态的就不是一整个dp数组了,而是前面两个类似前缀和的引用。

时间复杂度: O(n),空间复杂度: O(1)。

java 复制代码
class Solution {
    public int rob(int[] nums) {
        int pre = 0, cur = 0, tmp;
        for(int num : nums) {
            tmp = cur;
            cur = Math.max(pre + num, cur);
            pre = tmp;
        }
        return cur;
    }
}

动态处理的步骤,最重要的就是找到状态转移方程,当前状态可能不做更新,也可能与上一个状态有关。然后注意边界处理,用数组进行状态维护,若只与前几个数有关,也可以做空间优化。

相关推荐
Y1nhl7 分钟前
力扣_链表_python版本
开发语言·python·算法·leetcode·链表·职场和发展
一个 00 后的码农18 分钟前
26考研物理复试面试常见问答问题汇总(2)电磁波高频面试问题,物理专业保研推免夏令营面试问题汇总
考研·面试·职场和发展
qq_4017004122 分钟前
C语言中位运算以及获取低8位和高8位、高低位合并
c语言·开发语言·算法
CoovallyAIHub25 分钟前
YOLO模型优化全攻略:从“准”到“快”,全靠这些招!
深度学习·算法·计算机视觉
yanjiaweiya26 分钟前
云原生-集群管理
java·开发语言·云原生
闻缺陷则喜何志丹31 分钟前
【BFS】 P10864 [HBCPC2024] Genshin Impact Startup Forbidden II|普及+
c++·算法·宽度优先·洛谷
gadiaola35 分钟前
【JavaSE面试篇】Java集合部分高频八股汇总
java·面试
MicroTech20251 小时前
微算法科技(NASDAQ: MLGO)探索Grover量子搜索算法,利用量子叠加和干涉原理,实现在无序数据库中快速定位目标信息的效果。
数据库·科技·算法
艾迪的技术之路1 小时前
redisson使用lock导致死锁问题
java·后端·面试