【柱状图】——18

🌟 解锁数据可视化的魔法钥匙 ------ pyecharts实战指南 🌟

在这个数据为王的时代,每一次点击、每一次交易、每一份报告背后都隐藏着无尽的故事与洞察。但你是否曾苦恼于如何将这些冰冷的数据转化为直观、吸引人的视觉盛宴?

🔥 欢迎来到《pyecharts图形绘制大师班》 🔥

在这里,你将不再受限于单调的表格和图表,而是学会如何运用pyecharts这一强大的Python数据可视化库,将复杂的数据转化为令人惊叹的交互式图形。从基础的柱状图、折线图到高级的地理热力图、关系图,每一种图形都将是你讲述数据故事的得力助手。

🌈 为什么选择我们的专栏?

  1. 实战导向:我们拒绝空洞的理论,直接上手实战案例。从数据准备到图形渲染,每一步都详细讲解,确保你能快速上手。
  2. 深度解析:不仅仅是"怎么做",更重要的是"为什么这么做"。深入了解pyecharts背后的原理,让你的可视化作品更加专业且富有创意。
  3. 互动学习:专栏内设有专属交流区,遇到问题即时解答,与志同道合的伙伴共同进步。
  4. 持续更新:紧跟pyecharts最新版本,不断添加新图形、新功能的教学,确保你的技能永不落后。

🚀 订阅福利

  • 独家源码:获取所有案例的完整源码,直接复用或在此基础上创新。
  • 定制模板:多套精美可视化模板,让你在项目中脱颖而出。
  • 优先支持:享受优先解答疑问的特权,快速解决你在学习路上的任何障碍。

🌈 想象一下

  • 当你的报告以精美的图表呈现时,领导赞许的目光;
  • 当你的数据故事通过交互式图形生动展现,同事们的惊叹;
  • 当你的个人作品集因这些可视化作品而熠熠生辉,职业道路上的无限可能......

这一切,都从这里开始 ------ 《pyecharts图形绘制大师班》

👉 立即订阅,开启你的数据可视化之旅!让我们一起,用代码绘制世界,用图形讲述故事。

python 复制代码
import pyecharts.options as opts
from pyecharts.charts import Bar, Line



colors = ["#5793f3", "#d14a61", "#675bba"]
x_data = ["1月", "2月", "3月", "4月", "5月", "6月", "7月", "8月", "9月", "10月", "11月", "12月"]
legend_list = ["蒸发量", "降水量", "平均温度"]
evaporation_capacity = [
    2.0,
    4.9,
    7.0,
    23.2,
    25.6,
    76.7,
    135.6,
    162.2,
    32.6,
    20.0,
    6.4,
    3.3,
]
rainfall_capacity = [
    2.6,
    5.9,
    9.0,
    26.4,
    28.7,
    70.7,
    175.6,
    182.2,
    48.7,
    18.8,
    6.0,
    2.3,
]
average_temperature = [2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2]

bar = (
    Bar(init_opts=opts.InitOpts(width="1260px", height="720px"))
    .add_xaxis(xaxis_data=x_data)
    .add_yaxis(
        series_name="蒸发量", y_axis=evaporation_capacity, yaxis_index=0, color=colors[1]
    )
    .add_yaxis(
        series_name="降水量", y_axis=rainfall_capacity, yaxis_index=1, color=colors[0]
    )
    .extend_axis(
        yaxis=opts.AxisOpts(
            name="蒸发量",
            type_="value",
            min_=0,
            max_=250,
            position="right",
            axisline_opts=opts.AxisLineOpts(
                linestyle_opts=opts.LineStyleOpts(color=colors[1])
            ),
            axislabel_opts=opts.LabelOpts(formatter="{value} ml"),
        )
    )
    .extend_axis(
        yaxis=opts.AxisOpts(
            type_="value",
            name="温度",
            min_=0,
            max_=25,
            position="left",
            axisline_opts=opts.AxisLineOpts(
                linestyle_opts=opts.LineStyleOpts(color=colors[2])
            ),
            axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
            splitline_opts=opts.SplitLineOpts(
                is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1)
            ),
        )
    )
    .set_global_opts(
        yaxis_opts=opts.AxisOpts(
            type_="value",
            name="降水量",
            min_=0,
            max_=250,
            position="right",
            offset=80,
            axisline_opts=opts.AxisLineOpts(
                linestyle_opts=opts.LineStyleOpts(color=colors[0])
            ),
            axislabel_opts=opts.LabelOpts(formatter="{value} ml"),
        ),
        tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
    )
)

line = (
    Line()
    .add_xaxis(xaxis_data=x_data)
    .add_yaxis(
        series_name="平均温度", y_axis=average_temperature, yaxis_index=2, color=colors[2]
    )
)

bar.overlap(line).render("multiple_y_axes.html")
相关推荐
流烟默16 分钟前
基于Optuna 贝叶斯优化的自动化XGBoost 超参数调优器
人工智能·python·机器学习·超参数优化
海琴烟Sunshine18 分钟前
leetcode 263. 丑数 python
python·算法·leetcode
AI视觉网奇36 分钟前
yolo 获取异常样本 yolo 异常
开发语言·python·yolo
程序员爱钓鱼44 分钟前
Python编程实战 面向对象与进阶语法 迭代器与生成器
后端·python·ipython
程序员爱钓鱼1 小时前
Python编程实战 面向对象与进阶语法 JSON数据读写
后端·python·ipython
TH88861 小时前
一体化负氧离子监测站:实时、精准监测空气中负氧离子浓度及其他环境参数
python
苏打水com2 小时前
0基础学前端:100天拿offer实战课(第3天)—— CSS基础美化:给网页“精装修”的5大核心技巧
人工智能·python·tensorflow
顾安r2 小时前
11.5 脚本 本地网站收藏(解封归来)
linux·服务器·c语言·python·bash
Blossom.1182 小时前
把AI“贴”进路灯柱:1KB决策树让老旧路灯自己报「灯头松动」
java·人工智能·python·深度学习·算法·决策树·机器学习
❀͜͡傀儡师2 小时前
快速定位并解决Java应用CPU占用过高问题
java·开发语言·python