利用现有模型处理面部视频获取特征向量(3)

下一步在没有conda的ubuntu装miniconda3

bash 复制代码
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm ~/miniconda3/miniconda.sh

source ~/miniconda3/bin/activate
conda init --all

装完后,下载video_features的包,并创建虚拟环境

bash 复制代码
git clone https://github.com/v-iashin/video_features.git
cd video_features

conda env create -f conda_env.yml

启动虚拟环境,运行程序,为此我还把视频复制到服务器上面了。这样跑起来更方便。先来试个水

bash 复制代码
conda activate video_features
cd video_features 
python main.py \
    feature_type=r21d \
    device="cuda:0" \
    video_paths="[/home/ubuntu/short/0.mp4,/home/ubuntu/short/1.mp4,/home/ubuntu/short/2.mp4,/home/ubuntu/short/3.mp4,/home/ubuntu/short/4.mp4,/home/ubuntu/short/5.mp4,/home/ubuntu/short/6.mp4]"

但是还是被Killed了????

bash 复制代码
feature_type: r21d
model_name: r2plus1d_18_16_kinetics
stack_size: null
step_size: null
extraction_fps: null
device: on_extraction: print
output_path: ./output/r21d/r2plus1d_18_16_kinetics
tmp_path: ./tmp/r21d/r2plus1d_18_16_kinetics
keep_tmp_files: false
show_pred: false
config: null
video_paths:
- /home/ubuntu/short/0.mp4
- /home/ubuntu/short/1.mp4
- /home/ubuntu/short/2.mp4
- /home/ubuntu/short/3.mp4
- /home/ubuntu/short/4.mp4
- /home/ubuntu/short/5.mp4
- /home/ubuntu/short/6.mp4
file_with_video_paths: null

Device: cuda:0
The number of specified videos: 7
  0%|                                                                                      | 0/7 [00:00<?, ?it/s]
Killed

显示的原因还是out of memory,说是需要一百多个G。我才发现服务器的gpu就只有48g,我之前说的一个T,是硬盘内存,不是运行内存。1T的gpu,现在估计还没有这玩意儿吧?有的话得有多贵啊!!看来我把我们组想得太有钱了,富可敌国哈哈哈哈

师弟还帮我跑了一下,还是不行,果然还是视频有问题。视频有点大了,要么缩短时长,要么降低视频分辨率,要么两者都做一下,看一看会不会好一些。好了,师弟告诉我,只要把分辨率降低就能运行了。

我再附上缩短视频的代码,免得我忘记了,老是想要找可以免费剪辑视频的在线网页,但是通常没有免费又好使的。还是代码使得顺手。

python 复制代码
from moviepy import VideoFileClip, CompositeVideoClip
import os

input_os =  "C:/Users/DDDCY/Desktop/mp4"
##视频输入绝对路径
output_os = "C:/Users/DDDCY/Desktop/short"
##处理后的视频输出绝对路径
video_names = os.listdir(input_os)
for video in video_names:
    clip =CompositeVideoClip([VideoFileClip(input_os+"/"+video).subclipped(5,35)])
## (5,35)是想要截取的视频范围,也即截取5s~35s中的30s
    clip.write_videofile(output_os+"/"+video)

下面是降低视频分辨率的代码

python 复制代码
from moviepy import VideoFileClip
import os

input_os =  "C:/Users/DDDCY/Desktop/short"
output_os = "C:/Users/DDDCY/Desktop/low"

video_names = os.listdir(input_os)
for video in video_names:
    clip = VideoFileClip(input_os+"/"+video)
    new_clip = clip.resized((360, 640))
## (360,640)是希望得到的视频分辨率
    new_clip.write_videofile(output_os+"/"+video)

等处理完了我再在服务器上跑一跑

相关推荐
池央5 分钟前
StyleGAN - 基于样式的生成对抗网络
人工智能·神经网络·生成对抗网络
PaLu-LI38 分钟前
ORB-SLAM2源码学习:Initializer.cc⑧: Initializer::CheckRT检验三角化结果
c++·人工智能·opencv·学习·ubuntu·计算机视觉
小猪咪piggy1 小时前
【深度学习入门】深度学习知识点总结
人工智能·深度学习
汤姆和佩琦1 小时前
2025-1-20-sklearn学习(42) 使用scikit-learn计算 钿车罗帕,相逢处,自有暗尘随马。
人工智能·python·学习·机器学习·scikit-learn·sklearn
听吉米讲故事2 小时前
DeepSeek R1发布综述:开源大语言模型的推理能力新标杆
人工智能·语言模型·自然语言处理
热爱编程的OP2 小时前
机器学习 vs 深度学习
人工智能·深度学习·机器学习
跟德姆(dom)一起学AI3 小时前
0基础跟德姆(dom)一起学AI 自然语言处理18-解码器部分实现
人工智能·python·rnn·深度学习·自然语言处理·transformer
清图3 小时前
Python 预训练:打通视觉与大语言模型应用壁垒——Python预训练视觉和大语言模型
人工智能·python·深度学习·机器学习·计算机视觉·自然语言处理·ai作画
琴智冰3 小时前
使用ollama本地部署微调后的大语言模型
人工智能·语言模型·自然语言处理
红色的山茶花3 小时前
YOLOv10-1.1部分代码阅读笔记-predictor.py
笔记·深度学习·yolo