transformer与神经网络

一.神经网络

1.卷积神经CNN:适合处理图像,计算机视觉领域

2.循环神经RNN:存储序列数据,记住过去的信息应用到当前处理过程中,序列不能太长

3.长短时记忆网络LSTM:特殊的RNN,RNN的改进版本,能够更好捕捉长距离依赖关系

4.transformer

(1)并行计算

(2)捕捉长距离依赖

(3)可扩展性

(4)灵活性和效果

二.transformer工作原理

1.原理图

2.Transformer模型的生成过程可以分为以下4****个步骤:

(1)分词(Tokenization):token大模型中的最基本的处理单元

1)把汉字拆成积木(从前 / 国王 / 女儿)

(2)词嵌入(Embedding):矩阵计算

(3)注意力机制(Attention Mechanism):捕捉词之间的关联程度

1) 编码器处理:分析问题,用注意力划重点(国王和女儿的关系等)

2) 解码器处理:边编故事边查表,用注意力确保连贯

(4)最终的内容生成(Content Generation):输出结果

相关推荐
算法狗22 小时前
大模型面试题:1B的模型和1T的数据大概要训练多久
人工智能·深度学习·机器学习·语言模型
啊森要自信3 小时前
CANN ops-cv:揭秘视觉算子的硬件感知优化与内存高效利用设计精髓
人工智能·深度学习·架构·transformer·cann
scott1985123 小时前
transformer中的位置编码:从绝对位置编码到旋转位置编码
人工智能·深度学习·transformer
weixin_468466853 小时前
目标识别精度指标与IoU及置信度关系辨析
人工智能·深度学习·算法·yolo·图像识别·目标识别·调参
&星痕&3 小时前
人工智能:深度学习:1.pytorch概述(2)
人工智能·深度学习
power 雀儿3 小时前
FFN前馈网络C++实现
人工智能·深度学习
芷栀夏3 小时前
CANN ops-math:为上层 AI 算子库提供核心支撑的基础计算模块深度拆解
人工智能·深度学习·transformer·cann
袁气满满~_~3 小时前
深度学习笔记三
人工智能·笔记·深度学习
聆风吟º8 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
聆风吟º11 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann