Kmeans与KMedoids聚类对比以及python实现

在机器学习领域,聚类算法是一种常用的无监督学习方法,用于将数据集中的样本划分为若干个簇,使得同一簇内的样本尽可能相似,而不同簇之间的样本尽可能不同。K-Means 和 K-Medoids 是两种经典的聚类算法,它们都基于划分的思想,但在具体实现和应用场景上存在一些差异。

一、算法原理

1. K-Means:

  • 中心点选择: K-Means 算法通过计算簇内所有样本的均值来确定中心点(centroid)。

  • 距离度量: 通常使用欧氏距离来衡量样本与中心点之间的距离。

  • 迭代过程: 算法通过不断迭代更新中心点和样本所属簇,直到中心点不再变化或达到最大迭代次数。

2. K-Medoids:

  • 中心点选择: K-Medoids 算法从簇内选择一个实际存在的样本作为中心点(medoid)。

  • 距离度量: 可以使用任意距离度量方法,例如曼哈顿距离、欧氏距离等。

  • 迭代过程: 与 K-Means 类似,K-Medoids 也通过迭代更新中心点和样本所属簇,直到中心点不再变化或达到最大迭代次数。

二、异同点

特性 K-Means K-Medoids
中心点 虚拟点(均值) 实际存在的样本点
距离度量 通常使用欧氏距离 可以使用任意距离度量
对噪声和异常值的敏感性 敏感 不敏感
计算复杂度 较低 较高
适用场景 大规模数据集,簇形状为凸形 小规模数据集,簇形状任意

三、适用场景

K-Means:

  • 数据集规模较大,计算效率要求高。

  • 簇的形状为凸形,例如球形、椭圆形等。

  • 数据集中噪声和异常值较少。

K-Medoids:

  • 数据集规模较小,计算效率要求不高。

  • 簇的形状任意,例如非凸形、流形等。

  • 数据集中存在噪声和异常值。

四、Python 代码示例

K-Means:

复制代码
from sklearn.cluster import KMeans
import numpy as np

# 生成随机数据
X = np.random.rand(100, 2)

# 创建 KMeans 模型
kmeans = KMeans(n_clusters=3)

# 拟合模型
kmeans.fit(X)

# 获取聚类结果
labels = kmeans.labels_
centroids = kmeans.cluster_centers_

# 打印结果
print("Labels:", labels)
print("Centroids:", centroids)

K-Medoids:

复制代码
from sklearn_extra.cluster import KMedoids
import numpy as np

# 生成随机数据
X = np.random.rand(100, 2)

# 创建 KMedoids 模型
kmedoids = KMedoids(n_clusters=3)

# 拟合模型
kmedoids.fit(X)

# 获取聚类结果
labels = kmedoids.labels_
medoids = kmedoids.cluster_centers_

# 打印结果
print("Labels:", labels)
print("Medoids:", medoids)

五、总结

K-Means 和 K-Medoids 都是常用的聚类算法,它们各有优缺点,适用于不同的场景。K-Means 算法计算效率高,适用于大规模数据集和凸形簇,但对噪声和异常值敏感。K-Medoids 算法对噪声和异常值不敏感,适用于小规模数据集和任意形状的簇,但计算复杂度较高。在实际应用中,需要根据具体问题选择合适的算法。

相关推荐
老胖闲聊37 分钟前
Python Copilot【代码辅助工具】 简介
开发语言·python·copilot
Blossom.11841 分钟前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
曹勖之1 小时前
基于ROS2,撰写python脚本,根据给定的舵-桨动力学模型实现动力学更新
开发语言·python·机器人·ros2
lyaihao2 小时前
使用python实现奔跑的线条效果
python·绘图
ai大师3 小时前
(附代码及图示)Multi-Query 多查询策略详解
python·langchain·中转api·apikey·中转apikey·免费apikey·claude4
小小爬虾3 小时前
关于datetime获取时间的问题
python
蓝婷儿4 小时前
6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础
开发语言·python·学习
chao_7895 小时前
链表题解——两两交换链表中的节点【LeetCode】
数据结构·python·leetcode·链表
大霞上仙5 小时前
nonlocal 与global关键字
开发语言·python
Mark_Aussie6 小时前
Flask-SQLAlchemy使用小结
python·flask