Tensor 基本操作4 理解 indexing,加减乘除和 broadcasting 运算 | PyTorch 深度学习实战

前一篇文章,Tensor 基本操作3 理解 shape, stride, storage, view,is_contiguous 和 reshape 操作 | PyTorch 深度学习实战

本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started

Tensor 基本使用

索引 indexing

Tensor 的索引类似于 Python List 的索引和分片。

比如一个 AxBxC 的三个维度的 Tensor a

a[第0维的分片, 第1维的分片, 第2维的分片]

分片的语法和 Python List 分片语法一致,开始:结束:步进

更多索引的高级语法介绍

示例代码

复制代码
    print("*" * 8, " a")
    a = torch.randn(5,4,3)
    print(a)

    print("*" * 8, " b")
    b = a[1,]     # 只要第 0 维的第一个成员
    print(b)

    print("*" * 8, " c")
    c = a[1:]   # 第 0 维从第一个成员开始都要,注意:这里索引从 0 开始
    print(c)

    print("*" * 8, " d")
    d = a[1:, 1] # 第 0 维从第一个成员开始都要,第二维只要第一个成员
    print(d)

Result

复制代码
********  a
tensor([[[ 0.1874, -0.0980, -0.3815],
         [-0.8175,  1.5976, -1.4927],
         [-0.1507,  1.1806, -0.3685],
         [ 1.1583,  0.9419, -0.5540]],

        [[ 1.3078, -1.4250, -1.5981],
         [-0.0756,  2.0776,  0.7708],
         [ 1.6020, -1.9133,  1.2459],
         [-0.2817, -0.7238, -0.5413]],

        [[-0.8057, -0.4368, -1.2398],
         [ 0.8415,  1.7679,  0.6469],
         [ 0.7046, -0.4872,  1.1219],
         [-2.5866, -0.1263,  2.0684]],

        [[ 1.8756,  1.4231, -1.2082],
         [ 0.2111,  0.5244,  2.2242],
         [-0.9658, -1.3731, -0.9126],
         [-0.3850, -0.7273, -0.0519]],

        [[ 0.7949,  2.2807, -0.8793],
         [ 0.4037,  1.2422, -0.2393],
         [ 0.4786,  0.6107,  1.4225],
         [ 0.6104,  1.2682, -0.0801]]])
********  b = a[1,]
tensor([[ 1.3078, -1.4250, -1.5981],
        [-0.0756,  2.0776,  0.7708],
        [ 1.6020, -1.9133,  1.2459],
        [-0.2817, -0.7238, -0.5413]])
********  c = a[1:]
tensor([[[ 1.3078, -1.4250, -1.5981],
         [-0.0756,  2.0776,  0.7708],
         [ 1.6020, -1.9133,  1.2459],
         [-0.2817, -0.7238, -0.5413]],

        [[-0.8057, -0.4368, -1.2398],
         [ 0.8415,  1.7679,  0.6469],
         [ 0.7046, -0.4872,  1.1219],
         [-2.5866, -0.1263,  2.0684]],

        [[ 1.8756,  1.4231, -1.2082],
         [ 0.2111,  0.5244,  2.2242],
         [-0.9658, -1.3731, -0.9126],
         [-0.3850, -0.7273, -0.0519]],

        [[ 0.7949,  2.2807, -0.8793],
         [ 0.4037,  1.2422, -0.2393],
         [ 0.4786,  0.6107,  1.4225],
         [ 0.6104,  1.2682, -0.0801]]])
********  d = a[1:, 1]
tensor([[-0.0756,  2.0776,  0.7708],
        [ 0.8415,  1.7679,  0.6469],
        [ 0.2111,  0.5244,  2.2242],
        [ 0.4037,  1.2422, -0.2393]])

加减乘除

加法和减法

复制代码
import torch
 
# 这两个Tensor加减乘除会对b自动进行Broadcasting
a = torch.rand(3, 4)
b = torch.rand(4)
 
c1 = a + b
c2 = torch.add(a, b)
print(c1.shape, c2.shape)
print(torch.all(torch.eq(c1, c2)))

乘法和除法

*, torch.mul, torch.mm, torch.matmul

参考: torch.Tensor的4种乘法

除法可以用乘法 API 完成。

broadcasting 机制

在 Tensor 的加减运算中,当两个 tensor 不能直接符合数学的运算规则时,PyTorch 会先尝试将 tensor 进行变换,再进行计算,这个变换的规则就是:broadcasting。

更多 broadcasting 机制的介绍

更多运算

更多加法和其他运算,参考Pytorch Tensor基本数学运算

  • 减法运算
  • 哈达玛积(对应元素相乘,也称为 element wise)
  • 除法运算
  • 幂运算
  • 开方运算
  • 指数与对数运算
  • 近似值运算
  • 裁剪运算
相关推荐
永洪科技6 分钟前
AI领域再突破,永洪科技荣获“2025人工智能+创新案例”奖
大数据·人工智能·科技·数据分析·数据可视化
that's boy7 分钟前
Google 发布 Sec-Gemini v1:用 AI 重塑网络安全防御格局?
人工智能·安全·web安全·chatgpt·midjourney·ai编程·ai写作
Sui_Network8 分钟前
Crossmint 与 Walrus 合作,将协议集成至其跨链铸造 API 中
人工智能·物联网·游戏·区块链·智能合约
liruiqiang058 分钟前
循环神经网络 - 长短期记忆网络
人工智能·rnn·深度学习·神经网络·机器学习·ai·lstm
小杨40411 分钟前
python入门系列十六(网络编程)
人工智能·python·网络协议
Elastic 中国社区官方博客12 分钟前
Elasticsearch 向量数据库,原生支持 Google Cloud Vertex AI 平台
大数据·数据库·人工智能·elasticsearch·搜索引擎·语言模型·自然语言处理
Ven%1 小时前
电脑的usb端口电压会大于开发板需要的电压吗
人工智能·单片机·嵌入式硬件
Jackilina_Stone4 小时前
transformers:打造的先进的自然语言处理
人工智能·自然语言处理·transformers
2401_897930064 小时前
BERT 模型是什么
人工智能·深度学习·bert
风筝超冷5 小时前
GPT - 多头注意力机制(Multi-Head Attention)模块
gpt·深度学习·attention